
BOOMBOX
QUICK START GUIDE
FOR PROGRAMMING WITH SIMULINK

Note

While every effort has been made to
ensure accuracy in this publication,
no responsibility can be accepted for
errors or omissions. Data may change,
as well as legislation, and the reader
is strongly advised to obtain copies of
the most recently issued regulations,
standards, and guidelines.

1

Matlab Simulink

Chapter 1

INSTALLING THE SOFTWARE

Abstract — This section describes how to retrieve and install the software that is neces-
sary to get started with the BoomBox. This includes Simulink libraries, imperix’s BoomBox
blockset, as well as BoomBox Control debug and monitoring software.

Keywords — Simulink Blockset, BoomBox Simulink SDK, BoomBox Control, Install.

Before programming the BoomBox, the necessary software development environment
must be installed on a personal computer. The minimum software includes :

 » Matlab Simulink : the graphical programming environment provided by MathWorks
that allows to model and simulate the system before automatically generating the
code for the BoomBox.

 » BoomBox Simulink SDK : the software development kit (SDK) for Simulink that enables
to build Simulink models that accurately simulate the behavior of the BoomBox. It also
allows to automatically generate the corresponding run-time code.

 » BoomBox Control : a utility software from imperix that provides a graphical user interface
to monitor and control the BoomBox during run time. It is mostly useful for debugging
and validating control code at the system level.

1.1 MATLAB SIMULINK
The first step consists in downloading and installing Matlab Simulink, if not already done.
To activate your Matlab installation, a paid license issued by MathWorks is needed. This
license is neither provided nor sold by imperix.

 » Matlab and Simulink can be downloaded from https://www.mathworks.com.

 » The imperix blockset is compatible with Matlab R2014a and newer, in both 32- and
64-bit versions.

 » When prompted (figure below), select the following products during the installation :

• Matlab
• Simulink
• Embedded Coder
• Matlab Coder
• Simulink Coder

They are the only mandatory packages to start working.

https://www.mathworks.com

2

Installing the software

1.2 BOOMBOX SIMULINK SDK
The Simulink SDK for the BoomBox enables the user to develop and debug run-time
code for the BoomBox. The installer can be found on imperix’s website. Registration is
needed to access it.

 » In order to download the installer from imperix’s website, go to https://www.imperix.
ch/my-account and log into your account.

 » Click on the tab ‘My downloads’ and select ‘My software’.

 » Click on ‘BoomBox Simulink SDK x.x.x’ and the download button to get the latest ver-
sion of ‘SimulinkSDK_setup.exe’.

 » Once the download is finished, execute the installer.

Note :

It is highly recommended to keep the default destination folder C:\imperix\BBSimulinkSDK\
and to avoid spaces or special characters in the path name.

 » When prompted, select your licence file.

 » If you have already requested a license, it should by available in the license section on
imperix’s website. To download it :

• Go to https://www.imperix.ch/my-account on log into your account.
• Click on the tab ‘My downloads’ and click ‘My licenses’.
• Download the license file (.lic) that is meant for your computer.
• Use the downloaded license file for the ongoing install process.

 » If you do not have a license file, you must request one using the following process :

• Go to https://www.imperix.ch/request-license.
• Fill in the requested information. The UUID of your computer is required. Provide

the code displayed by the installer (see below).
• Your request will be validated and the license will be generated by a support

engineer. You will receive the file at the e-mail address indicated in the request

https://www.imperix.ch/my-account
https://www.imperix.ch/my-account
https://www.imperix.ch/my-account
https://www.imperix.ch/customer-area/
https://www.imperix.ch/request-license

3

BoomBox Control

form. The process usually takes less than one day if the request is sent during
office opening times (CET).

• Use the provided license file in the install process.

 » Once the licence file is selected, click on ‘Install’. The install finishes shortly.

1.3 BOOMBOX CONTROL
BoomBox Control is a graphical software that enables the user to monitor, control and
save data from the BoomBox control platform.

 » You will find the installer on the software download section of imperix’s website:

• Go to https://www.imperix.ch/my-account and log into your account.
• Click on the tab ‘My downloads’ and then ‘My software’.
• Download the latest version of ‘BoomBox Control Utility’.

 » Extract and execute ‘BoomBoxControl_setup.exe’.

 » Select an installation destination folder and click ‘Install’.

 » BoomBox Control has been installed on your computer !

1.4 ELECTRONIC CIRCUIT SIMULATOR
In many cases, it is recommended to run off-line simulations of your system before down-
loading and executing the associated runtime code. A third-party modeling software
may be needed for that purpose. We recommend using Plexim’s PLECS Blockset or Math-
Works’ Simscape Power Systems.

More details are provided in section 2.2.

https://www.imperix.ch/my-account
https://www.imperix.ch/customer-area/

4

Working with Simulink

Chapter 2

WORKING WITH SIMULINK

Abstract — This section describes how to simulate a control implementation on Simu-
link using the imperix blockset and how to automatically generate code to be run on a
BoomBox in real time. The simulation allows for a fine-tuning of the control before start-
ing experimenting with the BoomBox and real power.

Keywords — Template, plant model, simulation, automated code generation.

2.1 RETRIEVING THE DEFAULT TEMPLATE
To start working with the BoomBox and Simulink, open the default template located in
C:\imperix\BBSimulinkSDK\template\Bbox_template.slx. A copy should also be located
in C:\Users\username\Documents\MATLAB. It is also fine to start with any code example
provided by imperix.

It is highly recommended not to start with a Simulink blank model, since the template
already contains the necessary configuration for the automated generation and flashing
of the runtime executable.

The default template contains a basic skeleton to start working right away. The model
contains two subsystems:

 » Plant_model : contains the model of the system to be controlled. This is typically the
model of the converter itself. More details are provided in section 2.2.

 » Closed_loop_control : contains the control implementation that can be simulated or
used to generate the control code for the BoomBox. It also contains a configuration
block that performs the main configurations of the Simulink model. More details are
provided in sections 2.4, 2.5 and 4.1.

5

Plant model

2.2 PLANT MODEL
In order to run the control algorithm in simulation, Simulink needs a model of the con-
verter hardware. As seen before, this model should be located inside the ‘Plant_Model’
block of the root view of your Simulink model.

To model the converter hardware, it is recommended to use either PLECS Blockset or Sim-
scape Power Systems.

2.2.1 PLECS BLOCKSET
PLECS is a simulation tool for power electronics provided by Plexim. The PLECS blockset
for Simulink can be downloaded at https://www.plexim.com/download/blockset. With the
installer, you can either install :

 » PLECS Blockset : allows to create, edit, save and simulate a PLECS electrical circuit inside
Simulink. It requires a paid license from Plexim. The license is neither provided nor
sold by imperix.

 » PLECS Viewer : allows only to view and simulate a PLECS electrical circuit that has been
exported to work with PLECS Viewer. It doesn’t require any license and is free of use.

2.2.2 SIMSCAPE POWER SYSTEMS
Simscape Power Systems is a MathWorks toolbox for Simulink that allows to model and
simulate electrical power systems. It can be downloaded at https://www.mathworks.com/
products/simpower.html and requires a paid license from MathWorks. The license is nei-
ther provided nor sold by imperix.

https://www.plexim.com/download/blockset
https://www.mathworks.com/products/simpower.html
https://www.mathworks.com/products/simpower.html

6

Working with Simulink

2.3 BOOMBOX BLOCKSET
Starting from the default template or an existing example, you can start implementing
your own control, using the blocks provided in the BoomBox blockset, along with any
standard Simulink block.

The blockset can be found in the library browser by clicking and browse to ‘Boom-
Box’. Alternatively, you can open C:\imperix\BBSimulinkSDK\Lib\simulink\BoomBox.slx. It
is shown below.

The main library blocks are described in section 4.1 and some recommendations regar-
ding which blocks to use are given in section 4.3.

7

Simulation and code generation

2.4 SIMULATION AND CODE GENERATION
Thanks to the power of Simulink and the way the blocks of the BoomBox library are
implemented, you can do both simulation and Automated Code Generation (ACG) for
the BoomBox from the same unique Simulink model. To switch from one configuration
to the other, all you have to do is select the desired ‘Model execution purpose’ in the Con-
figuration block of the BoomBox library, as shown below.

• In simulation, the model is simulated using the plant model drawn inside the
Plant_model block. This block uses the simulation time step TSAMPLE to sample
its input/output signals and solve the plant model. The signals of the closed-loop
control are sampled at the control period CTRLPERIOD. Both those parameters
can be specified in the Configuration block. More details are provided in section
4.1.

• In Automated Code Generation, C code is generated to be executed in the Boom-
Box. All the signals coming from and going to the Plant_model block are disre-
garded and are replaced by the analog inputs and the digital outputs of the
BoomBox. The analog signals are sampled at the control period CTRLPERIOD
and the digital PWM outputs switch at SWPERIOD. More details are provided in
section 4.1.

2.4.1 RUNNING THE SIMULATION
To run the simulation, make sure that ‘Simulation’ is selected in the Configuration block of
the model, and click the ‘Run’ button (Ctrl+T) .

2.4.2 FLASHING THE BOOMBOX
To flash the code from Simulink, make sure that ‘Automated Code Generation’ is selected
in the Configuration block of the model, and click the ‘Build’ button (Ctrl+B) .

Note

This procedure will work, providing that a BoomBox is connected to the PC. To connect
your BoomBox, follow the instructions of section 3.2.1.

With this approach, the program is directly loaded into the DSP’s volatile memory and its
execution is controlled using the emulator.

8

Working with Simulink

2.5 BASIC CONTROL EXAMPLE
For the sake of example, a very basic control algorithm of a buck converter is depicted
below. It sets the output voltage at 12 V, regardless of the measured input voltage.

It contains:

• A Configuration block to define the model parameters (more details in section 4.1)
• An ADC block to retreive the simulated DC bus voltage in simulation, and the

analog input on channel 0 of the BoomBox in ACG (more details in section 4.1)
• A Tunnable Parameter block to define a variable that is accessible and modifiable in

real time from the BoomBox Control software (more details in sections 4.1 and 3.2)
• A PWM modulator to generate PWM signals with a duty-cycle D. The PWM sig-

nals are wired to the plant model in simulation and directly output on the digital
outputs of the BoomBox in ACG (more details in section 4.1)

9

Connecting to the BoomBox

Chapter 3

USING THE BOOMBOX

Abstract — This section describes how to connect the BoomBox to a computer and how
to use it once the code has been flashed. It includes instructions to configure its front-
panel analog inputs and explains how to use BoomBox Control.

Keywords — XDS100v2 emulator, flash, frontpanel configuration, monitoring, BoomBox Control.

3.1 CONNECTING TO THE BOOMBOX
For most applications, two physical links should be established between the BoomBox
and the computer :

 » Emulator : Connect TI’s XDS100v2 emulator (provided with the BoomBox) to the JTAG
port on the back end of the BoomBox and to the PC using a USB-mini cable. This link
is required to interact with the BoomBox from Simulink.

 » Virtual serial port : Place another USB (type B) cable between the console port of the
BoomBox (back end) and the PC. This link provides the virtual COM port that is used
by BoomBox Control.

3.2 USING BOOMBOX CONTROL

3.2.1 ESTABLISHING A CONNECTION WITH THE BOOMBOX
Once the BoomBox is wired to the PC and the code has been flashed from Simulink, open
BoomBox Control and proceed as follows :

 » Select your working folder for code development (most likely somewhere inside your
Simulink Workspace). This tells BoomBox Control where to look for code variables and
other configuration files.

 » Select ‘Local USB Connection’ and the COM port which corresponds to the BoomBox,
usually the last one.

 » Click connect to establish connection with the BoomBox.

10

Using the BoomBox

Notes :

BoomBox Control communicates directly with the DSP. As such, a working code must have
been downloaded and started inside the BoomBox. When the communication cannot
be established, the most probable cause is that no code is running inside the BoomBox.

For a code to be running inside the BoomBox, it must have been previously flashed from
Simulink, or be present inside the EEPROM.

3.2.2 WATCHING AND ALTERING VARIABLES

In the ‘Debugging’ tab, variables can be added to the watch list by typing their name in
the top field and pressing Enter. Their current values can then be monitored in real-time
in the list below. The user can also alter a variable’s value by double-clicking on it (see
figure above).

Additionally, by dragging a variable from the watch list and dropping it over the plot
below, the variable’s evolution in time can be viewed.

The maximum update rate of this plot is 10 Hz, so it is only suited to observe the evolu-
tion of slow-varying quantities. For fast phenomena and/or in order to retrieve consecu-
tive samples, we recommend using the datalogging feature described in section 6.2.5 of
the BoomBox User Manual.

11

Configuring Boombox frontpanel

3.2.3 ENABLING AND DISABLING GATING SIGNALS
Enabling and disabling the BoomBox’s gating signals is as simple as clicking the ‘Enable/
Disable’ button on the ‘Main Controls’ tab of BoomBox Control.

The enabling/disabling process is independent from the control algorithm running on
the BoomBox and acts as a switch on all PWM signals :

ENABLE

PWMduty cycles optical outputs

3.3 CONFIGURING BOOMBOX FRONTPANEL
For each analog input, the following parameters can be configured:

• Gain (x 2, x 4 or x 8)
• Low-impedance input (Yes or No)
• Filter (Yes or No) - If yes: filter frequency
• Low/high limit (between +/- 10 V)
• Disable safety (Yes or No)

These parameters can only by configured via the frontpanel of the BoomBox. This has
been implemented on purpose to guarantee a complete independence between the
control algorithm running on the DSP and the analog safety limits.

They are two ways of configuring the frontpanel: either directly on the frontpanel, using
the rotary and push button, or via BoomBox Control and using a USB stick.

If the latter is chosen, proceed as follows:

a) Connect a USB stick to the USB port on the frontpanel of the BoomBox

b) Use the rotary and push button to select ‘Backup config.’ on the LCD screen. It will
save the current analog configurations in a folder called ‘imperix’ on the root of the
USB stick. The filename format is ‘frontpanel#.bbox’, where # is a number that gets
incremented each time a new configuration is saved.

12

Using the BoomBox

c) Connect the USB stick to your PC, open the generated configuration file inside
the ‘Analog input configurator’ tab of BoomBox Control and perform the desired
changes.

d) Save the new configuration file in the ‘imperix’ folder of the USB stick, keeping the
filename in the form ‘frontpanel#.bbox’.

e) Apply this new configuration by connecting back the USB stick to the BoomBox
and selecting ‘Restore config’. The BoomBox will read the configuration file in the
folder ‘imperix’ with the highest number (#).

13

Main library blocks

Chapter 4

GOING FURTHER...

Abstract — This section aims to provide advanced material on the working principle of
the BoomBox blockset. It also includes some guidelines and a list of common mistakes
to avoid. Finally, it presents the steps to follow to flash the BoomBox in standalone.

Keywords — Sampling time, interrupt period, library blocks, S-functions, standalone flash.

4.1 MAIN LIBRARY BLOCKS
The main blocks of the BoomBox blockset (library) are described below.

 » Configuration : defines the main configurations of the Simulink model, such as :

• The ‘Model execution purpose’ : the choice between ‘Simulation’ on Simulink and
‘Automated Code Generation’ (ACG) for the BoomBox.

• The ‘Simulation step size’ : the sampling time of the Simulink simulation. This
parameter is only used in simulation and is disregarded in ACG. It can be accessed
with the variable TSAMPLE.

• The ‘Switching frequency’ : the switching frequency of the PWM outputs. This is
also the frequency of the main clock generator (ClockGen#0). Its period is acces-
sible with the variable SWPERIOD.

• The ‘Interrupt postscaler’ : the clock divider between the main clock generator
and the control interrupt. The control interrupt period is accessible with the varia-
ble CTRLPERIOD. This is also the sampling period of the ADC blocks.
• If postscaler = 0, CTRLPERIOD = SWPERIOD.
• Otherwise, CTRLPERIOD = SWPERIOD x (2 x postscaler).

• The ‘Modulator arrangement’ : the choice between using
• 8 pairs of complementary PWM signals with configurable dead time or
• 16 individual PWM signals without dead time.

If the latter is chosen, only the high-side PWM signals of the modulators are con-
sidered.

The outputs of the Configuration block are the PWM clock and the Sampling clock, to
be wired to the PWM modulator blocks and the ADC blocks, respectively. These clock
signals ensure that the sampling and the PWM generation in simulation are coherent
with what happens in real-time on the BoomBox. Both clocks signals are disregarded
in ACG.

Each Simulink model can contain one and only one configuration block.

14

Going further...

The different clock signals and their influence on sampling are illustrated below for the
cases postscaler = 0 and postscaler = 1.

Sampling clock
(rising edge)

Simulation steps

PWM clock

Phase = 0.5

SWPERIOD

Sampling instants

Postscaler = 0

CTRLPERIOD

TSAMPLE

Real current
Simulated current
Sampled current

Phase = 0.5

SWPERIOD

Postscaler = 1

CTRLPERIOD

TSAMPLE

Sampling clock
(rising edge)

Simulation steps

PWM clock

Sampling instants

Real current
Simulated current
Sampled current

15

Main library blocks

 » ADC : the Analog to Digital Converter.

• In simulation, it acts as a sampler of the input signal ‘simdata’, which is typically
a measurement signal coming from the simulated plant model. The lower input
port must be connected to the Sampling clock signal of the Configuration block.

• In ACG, it retrieves the signal of the specified analog input channel as sampled
by the BoomBox. The parameters to set are the ‘Sensor sensitivity’ and ‘offset’,
and the ‘Programmable gain value’ of the corresponding analog channel, as set
on the frontpanel of the corresponding BoomBox.

Note:

The programmable gain value of the ‘Frontpanel configuration’ is not automatically trans-
ferred to the frontpanel of the BoomBox and vice-versa. This parameter should correspond
to the frontpanel configuration of the BoomBox that has been set manually, following the

instructions of section 3.3.

 » DAC : the Digital to Analog Converter.

• In simulation, this block is disregarded.
• In ACG mode, it allows to output any signal on one of the 4 analog outputs of

the BoomBox (SMA connectors on the front end).

 » PWM : the PWM modulator for a given PWM channel. The parameters are the ‘Carrier
type’ and the ‘Dead-time duration’. The inputs of the blocks are the wanted ‘Duty-
cycle’ and/or the ‘Relative phase’. Using the phase parameter as input allows typically
to implement phase shift modulation.

• In simulation, it outputs the PWM signals, which should be wired to the gates of
the transistors of the simulated plant model. Dead-time is however not modelled
in simulation. The lower input port must be connected to the PWM clock signal
of the Configuration block.

• In ACG mode, the PWM signals are transferred to the optical outputs of the cor-
responding BoomBox PWM channel, providing the optical outputs have been
‘Enabled’ (see section 4.1). The outputs of the block are disregarded in ACG.

Warning

In ACG, special care should be taken of the ‘Dead-time duration’ parameter. If set too small,
a large shoot-through current may appear, leading to damage to or destruction of the
power switches. For safe operation, a value of 30 FPGA clock ticks (i.e. 1 μs dead-time) is

recommended.

16

Going further...

 » Probe : creates a global variable that is visible from BoomBox Control in ACG. This is typi-
cally used to plot any Simulink signal in real-time inside BoomBox Control.

 » Tunable parameter : creates a global variable that is accessible and modifiable from
BoomBox Control in ACG. This is typically used to change setpoints or controller gains
in real-time from BoomBox Control. The variable can also be accessed from anywhere
in the model by using a Simulink ‘Data Store Read’ block.

Further useful blocks are present, including coordinate transformations , a PLL, an incre-
mental decoder, etc...

4.2 USER CUSTOM BLOCKS
In some situations, it is more convenient to write some code instead of using Simulink
blocks only. For using C/C++ code, it is recommended to use S-functions. For MATLAB
code, the Matlab Function block is more convenient. Both solutions are presented below.

4.2.1 S-FUNCTIONS
The S-functions allow to implement custom Simulink blocks written in C/C++ (among
others) by compiling the code as a MEX file. They can be used in both simulation and
ACG. To use them, proceed as follows:

 » Use a ‘S-function builder’ block

• In the ‘Data properties’ tab, define the input/output size, and the set their data
type to single.

• The C code has to be written in the ‘Output’ tab.
 » Click the ‘Build’ button to build the code and generate the necessary files.

Note

This requires to have a compiler installed on the PC. You can find a list of the supported
compilers at https://ch.mathworks.com/support/sysreq/previous_releases.html. The installed
compiler can be displayed by taping the Matlab command mex -setup.

https://ch.mathworks.com/support/sysreq/previous_releases.html

17

Some guidelines and recommendations

4.2.2 MATLAB FUNCTIONS
 » For using Matlab code, the solution is to use the dedicated ‘MATLAB Function’ block.

This will work in both simulation and ACG.

 » A comprehensive list of the functions and objects supported for C/C++ code genera-
tion can be found at https://ch.mathworks.com/help/simulink/ug/functions-supported-
for-code-generation-alphabetical-list.html.

Note

This requires to have a compiler installed on the PC. You can find a list of the supported
compilers at https://ch.mathworks.com/support/sysreq/previous_releases.html. The installed
compiler can be displayed by taping the Matlab command mex -setup.

4.3 SOME GUIDELINES AND RECOMMENDATIONS
 » You may want to use the standard PID controller block to implement your PID control-

lers. To use it, make sure to select ‘Discrete-time’ in the ‘Time domain’ field of the block
configurations. In the ‘Sample time’ field, use the variable CTRLPERIOD.

In addition, to prevent the controller from integrating an error while the control is not
yet running (i.e. when the PWM outputs are not yet enabled), the integral term must
be reset when the PWM are disabled. This is only relevant when using ‘Automated Code
Generation’, but it is good practice to implement this mechanism in simulation as well.

To do so, in the configuration of the PID controller, chose ‘Level’ in the ‘External reset’
field and connect the ‘Reset’ block provided in the BoomBox library to its reset port.
The reset block outputs 1 while the PWM are disabled, and 0 otherwise. Your PID con-
troller (respectively PI), should look like this:

 » Any block requiring a sampling period (e.g. PI controller, integrator, delay, ...) should use
the CTRLPERIOD variable. To avoid hazardous behaviors, no other value should be used.

 » To verify that your code is running at the appropriate frequency, you can display the
sampling frequency of each signal using colors. To do so, go to Display > Sample times
> Colors and display the legend with Ctrl+J.

 » It is recommended to use the single data type, instead of the default double. This guar-
antees the fastest code execution time on the DSP. When needed, the ‘Data Type Con-
version’ can be used. A good practice when using constants is to define directly their
data type as single, so that Simulink propagates properly the data types.

https://ch.mathworks.com/help/simulink/ug/functions-supported-for-code-generation-alphabetical-list.html
https://ch.mathworks.com/help/simulink/ug/functions-supported-for-code-generation-alphabetical-list.html
https://ch.mathworks.com/support/sysreq/previous_releases.html

18

Going further...

4.4 COMMON MISTAKES
Here are some common mistakes that should be avoided :

 » If using multiple BoomBox on the same PC, note that only one JTAG connection can
be used at a time. It is recommended to disconnect the JTAG that is not used. The sup-
port of multiple simultaneous connections is under development.

 » When using BoomBox Control, if the selected folder does not contain the build files
of the code that is currently running in the BoomBox, the following error message
appears:

Rebuild the intended code or select the folder containing the appropriate build files
to fix the problem.

 » When loading the code in a BoomBox, if the LCD displays ‘SOFTWARE FAULT’, it can
be that :

• The code you have flashed cannot be executed in real time. Reducing the inter-
rupt frequency or simplifying the control algorithm can solve the problem.

• The FPGA firmware is not compatible with the Simulink library.
• There is an error in the interrupt configuration.
• The BoomBoxes have lost synchronisation.

If BoomBox Control is connected at that time, more details are displayed in the console.

 » If you cannot find the solution to your problem in this guide, do not hesitate to con-
tact our support team at support@imperix.ch.

4.5 FLASHING THE BOOMBOX IN STANDALONE
With this approach, the program is flashed into the BoomBox startup EEPROM using the
BoomBox Control software. The BoomBox will therefore automatically boot up on this
code after every power cycle. This approach is useful when the BoomBox should later
operate without a direct connection to a computer.

To do so, a connection to a BoomBox must to be established, using the procedure of sec-
tion 3.2.1. Once the BoomBox is connected :

 » Click the ‘Update firmware’ button on the ‘Main Controls’ tab.

mailto:support@imperix.ch

19

Flashing the BoomBox in standalone

 » Find the compiled output file in the Simulink workspace folder. It should be stored at
the address : [Simulink Workspace folder]/[YourProjectName]/Debug_BoomBox/

 » Select the ‘*.a00’ file, and open it.

Note :

The ‘*.a00’ file is generated by Simulink after a successful build. In consequence, this file is
not produced until the compilation and linking processes have succeeded.

 » A set of messages are displayed in the BoomBox Control console, confirming that the
BoomBox has been programmed (its EEPROM is written) and rebooted.

imperix Ltd.
Rue de la Dixence 10
CH-1950 Sion
Switzerland

Phone +41 (0)27 552 06 60
Fax +41 (0)27 552 06 69

www.imperix.ch
support@imperix.ch

Find your closest distributor on imperix.ch/resellers

	Installing the software
	1.1 Matlab Simulink
	1.2 BoomBox Simulink SDK
	1.3 BoomBox Control

	Working with Simulink
	2.1 Getting started with the default template
	2.1.1 Where to find
	2.1.2 What’s inside

	2.2 Plant model
	2.2.1 PLECS
	2.2.2 Simscape Power Systems

	2.3 BoomBox library
	2.4 Simulation and code generation
	2.4.1 Running the simulation
	2.4.2 Flashing the BoomBox

	2.5 Basic control example

	Using the BoomBox
	3.1 Connecting to the BoomBox
	3.2 Using BoomBox Control
	3.2.1 Establishing a connection with the BoomBox
	3.2.2 Watching and altering variables
	3.2.3 Enabling and disabling gating signals

	3.3 Configuring Boombox frontpanel

	Going further...
	4.1 Main library blocks
	4.2 User custom blocks
	4.2.1 S-functions
	4.2.2 Matlab Functions

	4.3 Some guidelines and recommendations
	4.4 Common mistakes
	4.5 Flashing the BoomBox in standalone

