
Using the angle decoder modules

PN104 | Posted on March 29, 2021 | Updated on May 8, 2025

Julien ORSINGER

Power Applications Specialist

•

Table of Contents

Technical resources

Incremental encoder

Decoder

Computing angular speed

Initialization of the rotor position

B-Box / B-Board implementation

Simulink

PLECS

C/C++ code

This document provides instructions on how to interface an incremental encoder

with a B-Box RCP or a B-Board PRO and how to read the motor rotor position using

the angle decoder modules. It also presents a simple and effective way to derive an

angular velocity from the measured angle.

Technical resources

B-Box datasheet

B-Board datasheet

DEC – Angle decoder function block

Implementation example: Field-oriented control of permanent magnet

synchronous machine

Incremental encoder

https://www.linkedin.com/in/julien-orsinger-640ab2129/
https://imperix.com/products/control/bbox
https://imperix.com/products/control/bboard
https://imperix.com/wp-content/uploads/document/B-Box_Datasheet.pdf
https://imperix.com/wp-content/uploads/document/B-Board_Datasheet.pdf
https://imperix.com/doc/uncategorized/dec-angle-decoder
https://imperix.com/doc/implementation/field-oriented-control-of-permanent-magnet-synchronous-machine
https://imperix.com/doc/implementation/field-oriented-control-of-permanent-magnet-synchronous-machine

In drive applications, the knowledge of both the rotor angular position and angular

speed is a central point to achieve oriented vector control and robust speed control.

These two variables can either be measured (sensored) or estimated (sensorless).

In sensored applications, one possible way of measuring the rotor position is by

using incremental encoders. They notably differ from absolute encoders in that the

latter provides an absolute position, often coded in Gray code. Incremental encoders,

on the contrary, provide only incremental position changes and an interface is

needed to compute the rotor absolute position. This is the purpose of the decoder

module available on the B-Box RCP and B-Board PRO.

The most common incremental encoders are quadrature encoders. They produce

quadrature signals A and B, allowing to deduce the direction of rotation, depending

on which signal is leading. Optionally, a reset signal Z is present to provide an

absolute position (one pulse per turn). Finally, to offer more robustness against

perturbations, some encoders provide also the complementary signals \A, \B and \Z.

References

[1] Encoder Products Company, “WP-2011: The Basics of How an Encoder Works“,

White paper, March 2018

[2] Autonics, “Rotary encoders – Technical description”, Feb 2018

Given that the DEC – Angle decoder is fully configurable, it should accommodate a

wide range of commercially available sensors, provided that their output voltage level

is compatible as well. As an example, CFS50 series from Sick is fully supported.

Decoder

The decoder modules present on the B-Box RCP and B-Board PRO are meant to

decode the angle information from a quadrature incremental encoder, with or

without Z signal and with or without complementary signals. They offer the following

configuration parameters:

Parameter Possible values Remark

Input mode
Single-ended /

Differential

If Differential, the complementary

signals are also considered

Pulse per

rotation

(ppr)

Between 1 and

65536

Must correspond to the encoder

specifications

Reset mode Maximum value / Z

input

If Maximum value, the decoder

counter is reset when it reaches

https://en.wikipedia.org/wiki/Gray_code
https://imperix.com/doc/uncategorized/dec-angle-decoder

the ppr value. Otherwise, it’s reset

on a rising edge of the Z signal.

Direction
Clockwise /

Counterclockwise

If Clockwise and A is leading, the

angle increases

Invert input

signals
No / Yes

If Yes, all the inputs signals are

inverted

The decoder driver is implemented in FPGA with the following logic:

FPGA logic diagram of one angle decoder module

There are a total of 4 decoder modules on each B-Box or B-Board. The encoder

signals have to be connected to the GPI inputs of the device, using the following

pins:

Conn. pin GPI signal DEC signal

A2 GPI 0 A0

A3 GPI 1 B0

A4 GPI 2 Z0

A5 GPI 3 A1 or \A0

A6 GPI 4 B1 or \B0

A7 GPI 5 Z1 or \Z0

Conn. pin GPI signal DEC signal

B2 GPI 8 A2

https://imperix.com/doc/wp-content/uploads/2021/03/image-169-1024x633.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-169-1024x633.png

B3 GPI 9 B2

B4 GPI 10 Z2

B5 GPI 11 A3 or \A2

B6 GPI 12 B3 or \B2

B7 GPI 13 Z3 or \Z2

For operation with the B-Box RCP, imperix provides a handy breakout board for the

digital signal connectors, available here.

For operation with the B-Board PRO and a custom carrier board, the designer must

make sure to use the appropriate pins so that the DEC functions are available.

Computing angular speed

The angular speed can be derived from the angle information, directly inside the user

application. The angular speed being the derivative of the angle, it can be computed

as the variation of the measured angle between two consecutive samples:

As the measured angle is in the range , its value jumps from to . These

discontinuities can be compensated as follows:

ωm(k) =
θm(k) − θm(k − 1)

Ts

[0; 2π] 2π 0

https://imperix.com/products/control/accessories
https://imperix.com/doc/wp-content/uploads/2021/03/image-170-1024x727.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-170-1024x727.png
https://imperix.com/doc/help/b-board-pro-carrier-board

Oftentimes, the speed value needs to be filtered to minimize the effect of the

quantization error of the angle encoder. A simple filtering solution is by using an IIR

filter, with the following transfer function:

The parameter depends on the filter cutoff frequency and the

sampling period (i.e. execution rate of the filter):

Initialization of the rotor position

The Z signal of an incremental encoder gives a reference for the rotor position,

allowing the decoder to provide an absolute rotor angle, once initialized. However,

there is no guarantee that this reference corresponds to 0 rad electrically. A possible

way to initialize the rotor position is to proceed manually:

1. Before energizing the converter, one complete rotation of the rotor is done

manually to reset the decoder counter with a pulse on the Z signal.

2. The converter is energized (DC bus charged) and a current (typically 0.5 p.u.) is

applied to the phase a of the motor. This will align the rotor with one of the

poles of phase a.

3. The offset of the measured angle is compensated, in order to measure 0 rad

when the rotor is aligned with phase a (i.e. when the permanent magnet flux is

completely along the α-axis).

Other initialization methods are of course possible. The above procedure has the

advantage of being extremely simple to set up and is applicable to most drive

testbenches.

B-Box / B-Board implementation

Simulink

The dedicated Simulink block is described in DEC – Angle decoder.

ωm(k) =

⎧⎪⎨⎪⎩ (θm(k) − θm(k − 1) + 2π)/Ts if θm(k) − θm(k − 1) < −π

(θm(k) − θm(k − 1) − 2π)/Ts if θm(k) − θm(k − 1) > π

(θm(k) − θm(k − 1))/Ts otherwise

H(z) =
α

1 + (α − 1)z−1

α fc = 1/(2πtc)

Ts

α =
Ts

tc + Ts

=
2πfcTs

1 + 2πfcTs

https://imperix.com/doc/uncategorized/dec-angle-decoder

The decoder block (DEC) provides the measured angle. As such, the speed can also

be derived as follows:

The following function accounts for discontinuities in the measured angle:

f(u) = u(1)+2*pi*((u(1)-u(2))<-pi)-2*pi*((u(1)-u(2)>pi))

PLECS

The dedicated PLECS blocks is described in DEC – Angle decoder.

Similarly to the Simulink implementation, the decoder block (DEC) can be used as

follows:

The following function accounts for discontinuities in the measured angle:

f(u) = u(1)+2*pi*((u(1)-u(2))<-pi)-2*pi*((u(1)-u(2)>pi))

https://imperix.com/doc/wp-content/uploads/2021/03/image-171-1024x513.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-171-1024x513.png
https://imperix.com/doc/uncategorized/dec-angle-decoder
https://imperix.com/doc/wp-content/uploads/2021/03/image-172.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-172.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-173-1024x198.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-173-1024x198.png

C/C++ code

The corresponding C/C++ routines are described in DEC – Angle decoder.

Implementation example

In UserInit: configuration of a differential decoder, with 4096 pulses per rotation

and Z signal:

tUserSafe UserInit(void)
{
 // ...

 // Configuration of the decoder (angle measurement)
 Dec_ConfigureInputMode(DECODER_CHANNEL_0, DIFFERENTIAL);
 Dec_ConfigurePulsePerRotation(DECODER_CHANNEL_0, 4096);
 Dec_ConfigureResetMode(DECODER_CHANNEL_0, ZINPUT);

 // ...
}
Code language: C++ (cpp)

In the main interrupt UserInterrupt: get the measured angle and compute the

speed. An angle offset can be added to the measured angle to match the angle

reference with the application.

tUserSafe UserInterrupt(void)
{
 // ...

 // Get angle from decoder module
 angle_meas = Dec_GetAngle(DECODER_CHANNEL_0) + angle_offset;

 // Speed measurement
 speed_meas_raw = ComputeSpeed(angle_meas, previous_angle);
 previous_angle = angle_meas;
 // Low-pass filter measured speed
 speed_meas = speed_meas - (alpha * (speed_meas - speed_meas_raw));

 // ...
}

float ComputeSpeed(float current_angle, float previous_angle)
{
 float corr = 0.0;

 if (current_angle - previous_angle < -PI)
 corr = 2*PI;
 else if (current_angle - previous_angle > PI)
 corr = -2*PI;

https://imperix.com/doc/uncategorized/dec-angle-decoder

 return (current_angle - previous_angle + corr)/SAMPLING_PERIOD;
}Code language: C++ (cpp)

