
Analog inputs configuration on B-Box Micro

PN106 | Posted on February 6, 2024 | Updated on May 7, 2025

Benedikt BORTER

Hardware Development Engineer

•

Table of Contents

Safety limits

Configuring the safety limits

Operating with safety limits

Numerical example

Software configuration of ADC data acquisition

Simulink blockset

PLECS blockset

C/C++ configuration

Further readings

This page covers the configuration of the analog inputs of the B-Box Micro. The B-Box Micro

possesses 8 analog inputs with identical channels. The equivalent schematic of the complete

data acquisition chain is depicted below.

Since the gain of the input stage is equal to 1, the differential input range of the B-Box Micro is

the same as for the B-Board PRO itself, which is ±5V.

Unlike the B-Box RCP, the B-Box Micro does not feature a fully-programmable front-end, which

means configurable input impedances, programmable gain amplifiers and low-pass filters are not

available. These features of the B-Box RCP are described in Analog front-end configuration on B-

Box RCP (PN105). However, the B-Box Micro features FPGA-based safety limits which can be

configured on the software side.

https://www.linkedin.com/in/benedikt-borter/
https://imperix.com/products/control/power-inverter-controller/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp

The following sections show the two steps that should be taken before turning on the power side:

1. First and foremost, the safety limits must be set carefully.

2. Then the software blocks should be configrured properly.

Safety limits

The B-Box Micro provides the capability to program safety limits that blocks PWM outputs if one

of the analog inputs exceeds the configured limit value. If configured properly, this ensures that

dangerous or potentially damaging values (such as current or voltage) cannot be exceeded.

Configuring the safety limits

Unlike the B-Box RCP, which implements these protections as a software-independent

mechanism, the B-Box Micro relies on programmable FPGA-based comparators, which can be

directly configured from within Cockpit. For that, when connected to a B-Box Micro, the Target

configuration window offers an additional tab called Analog inputs (see illustration below).

The selection of suitable limit values used as protection thresholds is always a function of the

application. It is generally recommended to select limits that are slightly above the planned

https://imperix.com/doc/wp-content/uploads/2024/02/CB3-MBX-AIN-2-1024x453.png
https://imperix.com/doc/wp-content/uploads/2024/02/CB3-MBX-AIN-2-1024x453.png
https://imperix.com/doc/wp-content/uploads/2024/02/cockpit-targetconfig-safetylimits-4-1024x578.png
https://imperix.com/doc/wp-content/uploads/2024/02/cockpit-targetconfig-safetylimits-4-1024x578.png

operating conditions, while staying below the maximum acceptable ratings of the involved

components. In some cases, the protection of personnel may also impose lower constraints.

Operating with safety limits

During operation, in case any overvalue is detected, the B-Box Micro enters the so-called FAULT

state, which itself leads to the blocking of all PWM outputs. Cockpit indicates the FAULT state in

the project pane interface as shown below. By clicking on the message “Click here for details”

Cockpit opens the Target configuration window and shows which limit (high or low) on which

channel was exceeded (see illustration below). In order to allow PWM outputs to be enabled

again, the fault must be acknowledged by clicking on the corresponding button.

Numerical example

Let’s assume that a sinusoidal current is measured using a DIN50A sensor. It is planned that the

system will be operating at most with 18A (RMS), which is compliant with the employed

equipment. A reasonable threshold could hence be set at 20A (RMS value), so that any current

exceeding that value may be considered as a sign of some sort of malfunction.

The sensor sensitivity being 99.0 mV/A, the Limit high and Limit low values can be computed as

follows:

Maximum acceptable instantaneous current:

Corresponding sensor output:

Limit high and Limit low

Software configuration of ADC data acquisition

The dedicated software blocks are described in ADC – Analog data acquisition.

±20 A × √2 = ±28.28 A

±28.28 A × 99 mV/A = ±2.8 V

= +2.8 V = −2.8 V

https://imperix.com/doc/wp-content/uploads/2024/02/cockpit-safetylimit-error3-3-1024x673.png
https://imperix.com/doc/wp-content/uploads/2024/02/cockpit-safetylimit-error3-3-1024x673.png
https://imperix.com/wp-content/uploads/document/DIN-50A.pdf
https://imperix.com/doc/software/analog-data-acquisition

Simulink blockset

ADC blocks mainly serve to transform the raw 16bits ADC data into a usable floating-point

quantity. By configuring the block with the suitable sensor parameters (sensitivity and offset), the

computation will be executed automatically using these parameters. When using imperix

sensors, the parameters can even be pre-loaded using the related drop-down list.

A third parameter must also be configured for the above-mentioned computation to be correctly

executed: the overall gain of the analog input stage. While this is a configurable parameter with

the B-Box RCP, this is always fixed with the B-Box Micro. The admissible (differential) full-scale

being ±5V, the equivalent gain is x2.

When using B-Box Micro, the option “Match B-Box Micro and B-Board input full-scale” must be

ticked.

https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_simulink1-1.png
https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_simulink1-1.png

PLECS blockset

The same configuration parameters are accessible from the PLECS blockset, as shown below.

When using B-Box Micro, the gain “x2 (matches B-Box Micro and B-Board input full-scale)” must

always be selected.

https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_simulink2.png
https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_simulink2.png

C/C++ configuration

First, during the initialization phase, each ADC channel must be properly configured using

Adc_ConfigureInput():

https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_plecs1.png
https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_plecs1.png
https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_plecs2.png
https://imperix.com/doc/wp-content/uploads/2024/02/adc_blockset_plecs2.png

void Adc_ConfigureInput(uint channel, float gain, float offset);Code language: C++ (cpp)

channel is the analog input channel number.

gain and offset must be configured considering that the returned value during operation

is computed as , where is the gain and the offset.

Numerical example

This example considers the current sensor of a PEB8024 module, which sensitivity S is

50.0mV/A. Considering that the ADC offers 16 bits over the ±5V input range, the gain is

computed as follows:

This results in a total sensitivity of .

In this example, gain must therefore be equal to .

Alternatively, it is possible to use the Macro ADCONV_BBOARD, corresponding to is 5/32768.

In this case, gain must be set to .

The offset value can be adjusted empirically to cancel the measured value when no current is

flowing through the sensor (static offset).

Subsequently, within each interrupt, the latest value can be retrieved using Adc_GetValue(), in

which channel is the analog input channel number:

float Adc_GetValue(uint channel);Code language: C++ (cpp)

Further readings

Getting started with B-Box Micro

Installation guide for imperix ACG SDK

Getting started with ACG SDK on Simulink

Getting started with ACG SDK on PLECS

y = ax + b a b

α = S ⋅ 32768/5 = 327.68[bit/A]

a = 1/α = 3.052[mA/bit]

a = ADCONV _BBOARD/S

https://imperix.com/wp-content/uploads/document/PEB8024.pdf
https://imperix.com/doc/help/getting-started-with-b-box-micro
https://imperix.com/doc/help/installation-guide-acg-sdk
https://imperix.com/doc/help/getting-started-acg-sdk-simulink
https://imperix.com/doc/help/getting-started-acg-sdk-plecs

