SFP communication with third-party devices

PN109 | Posted on January 22,2026 | Updated on February 2, 2026

Francois LEDENT
Development Engineer

imperix - in

Table of Contents

e SFP, Aurora and imperix

e Setup overview

e Supported devices

e User application template

e Generate the bitstream

e Startup procedure

e Address mapping

e To go further
o How to exchange more signals
o How to assign a different SFP port
o Implementation details

While imperix controllers are typically programmed by building applications in
Simulink or PLECS, imperix also provides direct access to FPGA resources through
its FPGA development environment, known as the sandbox.

This level of access enables a wide range of applications, including direct control of
the controller transceivers and the implementation of Aurora communication over
the physical SFP ports. Such flexibility makes it well suited to accommodate the
diverse Aurora configurations used by major simulator vendors, such as OPAL-RT,
Plexim and RTDS.

This page explains how to set up this communication by combining a user
application running on the CPU with additional logic in the FPGA bitstream. For a
quick and straightforward integration, a ready-to-use user application template is
provided, along with generation scripts to easily generate the bitstreams for several
vendors.

https://www.linkedin.com/in/francois-ledent/

This page is designed for users interested in Aurora communication and does not
require any prior experience with FPGA programming.

For now, this page applies to the following imperix controllers: B-Box RCP 3.0, B-
Board PRO, Programmable Inverter (TPI).

SFP, Aurora and imperix

With three Small Form-factor Pluggable (SFP) ports, the imperix controllers are
naturally built for
multi-devices topologies, such as wide multi-master and master-slave RealSync

networks.

To fully leverage these high-speed SFP connections, the Aurora protocol from Xilinx
provides a lightweight, high-throughput protocol. By using native transceivers with
minimal overhead, Aurora delivers low latency and near line-rate performance
without the complexity of protocols like Ethernet, making it an efficient and practical
choice for high-bandwidth, point-to-point links.

Although simple, Aurora requires identical configurations at both ends of the link.
This usually makes interoperability between devices from different vendors
challenging, as vendors often opt for slightly different settings.

To avoid this bottleneck and remain compatible with all (or most) Aurora-compatible
devices on the market, imperix gives full access to the SFP ports. Off-the-shelf
drivers and synthesis-ready Vivado projects are provided for various vendors such as
Plexim, OPAL-RT and RTDS, along with simple loopback and more advanced
examples.

Setup overview

The setup considered to exchange data with a third-party device is depicted below. It
is composed of three main parts: the user application, the FPGA bitstream and the
third-party application.

https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/power/programmable-inverter/
https://imperix.com/technology/low-latency-communication/
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/aurora8b10b.html

ix controller

e fSBOl -+ . |s|FIFO}| &
control o © L) [
code = 2 % OPAL-RT
2P SB| e~ © |«—FIFOle— 3 ;
< . Plexim
n. of tx signals T
SBO : RTDS
n. of rx signals SBI L. :
CPU FPGA third-party
(user application) (bitstream) simulator

The user application is running in the CPU of the imperix controller and contains the
code designed by the user, typically a control algorithm. This application has no
special requirements, except that it contains SBO blocks to send data to the driver
and SBI blocks to access incoming data from the SFP connection.

The FPGA bitstream defines the logic executed on the imperix controller's FPGA.
Together with the controller firmware, it implements the functionality required for
Aurora communication. The core components of this communication are the driver,
FIFOs and the Xilinx Aurora IP:

e The driver receives the outgoing data from the user application through the
SBO blocks, packages it into frames compatible with the third-party simulator
and transfers the frames to the Aurora IP. In parallel, it receives incoming
frames from the Aurora IP, decodes them and makes the values available to the
user application via SBI blocks.

e The FIFOs are essential for the clock domain crossing. It makes the bridge
between the main clock domain of imperix controllers, running at 250 MHz, to
the clock domain of the Aurora IP. The frequency of the Aurora IP depends on
the configuration of the Aurora channel and is therefore different for each
vendor.

e The Aurora IP is provided by Xilinx. As explained in its presentation page, the IP
enables easy implementation of transceivers while providing a light-weight
user interface on top of which designers can build a serial link.

Because major market vendors use different Aurora channel configurations and, in
some cases, specific frame structures, the bitstream is vendor-specific and must be
generated using the corresponding generation scripts.

Finally, the third-party application runs on a third-party device and is not directly
related to imperix products. In this example, it is required that the application
enables an Aurora communication on an SFP port of the third-party simulator.

https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/aurora8b10b.html

More information about the CPU-FPGA communication can be found in Exchanging
data between the CPU and the FPGA.

Supported devices

The supported devices are listed below. Devices marked in bold have been expressly
tested and validated.

Vendor | Compatible devices Related page(s)

g_llz_)AL_ 0OP4510, OP4512 Aurora link with OPAL-RT via SFP
Plexim RT-Box 1, RT-Box 2, Aurora link with Plexim via SFP

RT-Box 3

SFP communication with an RTDS
MMC simulator (*)

RTDS GTSOC V2

(*) For this device, the communication chain, driver and address mapping differ in
order to match the frame structure expected by the MMC model running on the
GTSOC V2.

; Lectrlcalengmeerlng software ITechnolog|eS

R

The Aurora configuration applied by each vendor is summarized in the following
table.

Aurora Line rate . CRC Frame
Vendor Endianness

protocol (Gbps) check structure
OPAL- Aurora

Littl Y -

RT 88108 5 ittle es
Plexim Aurora 6.25 Bi Yes Custom

64B66B ' g

Aurora .
RTDS 2 Little No Custom

8B10B

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/aurora-link-with-opal-rt-via-sfp
https://imperix.com/doc/help/aurora-link-with-plexim-via-sfp
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_third_parties_alt-1024x268.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_third_parties_alt-1024x268.png

User application template

As mentioned, the user application has no special requirements, except that it
contains SBO and SBI blocks to communicate with the driver running in the FPGA.

For a quick start, a simple user application template that sends and receives three
signals via SFP is provided below as a starting point, either in Simulink or PLECS:

Download aurora_ix_template.slx

Download aurora_ix_template.plecs

#3 aurors_in/Closed_loop_control - Simulink - u} X
File Edit View Display Diagram Simulation Analysis Code Tools Help
Closed_loop_control

@ |[ajaurora_ix ¥ [PajClosed kop_control b -

LCY
[#] BE0 Lt v 880
- reg_00-01 4 | L . 4 reg_00-01
SBI [‘Emzangla slv\glezgw"'2 SBO
]
- Cirl+L on this block
. 1o show library B8O e
reg_02-03 4 > signals 3ph-sine
S8l [Zsbizsingle L@ sgnas
Three-phase -
B30 - snewave
reg_04-05 v
Bl B Cwizange
- BB0 tx n_signals| BB0
s reg_255 L] _n_signals Ln_sg 3E reg_255
- SBI SBO
e
»
Ready 125% FinedStcphuln)
) aurora_ix_template/imperix controller - m] x

File Edit View Simulation Format Coder Window Help

Control Task Trigger Note: ta change the number of signals handled by the sbi2single and
-5 single2sbo C-Saript blocks, double-dlid on the blocks and change their
number of inputs and outputs in the 'Setup' tab.

i.e. shizsingle for N signals -= 2N inputs, N outputs
single2sho for N signals -== N inputs, 2N outputs

BBO BBO
reg 0:5 —» C-Saipt 4>[; rx_signals f\/ C-Saipt reg 0:5
SBI = SBO
shi2single Three-phase L’l; Besignals gingleasho
sinewave
BBO BBO
: S
reg 255 —Dlj n_n_signals n s .—b reg 255
¢_n_signals
" -

As presented in details in Exchanging_data between the CPU and the FPGA, the
communication between the CPU and the FPGA is handled by the SBIO bus. Thanks
to the related SBI and SBO blocks, the CPU generates read and write requests on the
SBIO bus and interacts with the registers located in the FPGA.

As the SBIO bus is intended to carry 16-bit data, the 32-bit values are split into two
16-bit words to be transferred over the bus. The conversion is handled by the
singleZ2sbo and sbiZsingle Matlab/C-Script functions.

The address mapping is detailed in the dedicated section below.

https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_simulink-1024x436.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_simulink-1024x436.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_plecs.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_plecs.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga

To build the user application, make sure that the Automated Code Generation mode
is selected in the CONFIG block and press Ctrl+B (Simulink) or Ctrl+Alt+B and
then Build (PLECS).

Generate the bitstream

To generate the bitstream running in the imperix controller, please follow the steps
outlined below:

1. Install the Vivado Design Suite (version 2022.1 is recommended). The step-by-

step installation procedure is detailed in Installation of AMD Xilinx Vivado
Design Suite.

2. Download the imperix source files (version 3.10 Rev. 0 or later is mandatory).
The source files are available for free at Download of the imperix firmware IP
for FPGA sandbox.

3. Download the generation scripts corresponding to the targeted vendor in the

table below and mimic the procedure of this page to generate the bitstream
from the scripts.

Vendor Compatible devices Generation scripts
OPAL-
RT OP4510, OP4512 aurora_ix_opalrt_gen_scripts.zip

RT-Box 1, RT-Box 2, RT-

Plexim
Box 3

aurora_ix_plexim_gen_scripts.zip

The provided FPGA logic is connected to the port SFP 0 (UP) and supports the
exchange of up to 32 signals in each direction. To extend the number of signals or

assign another SFP port, refer to the How to extend more signals and How to assign
a different SFP port sections below.

Startup procedure

To start using the setup and exchange data with the third-party device:

1. Connect the imperix controller to the third-party simulator with an SFP cable.
By default, the Aurora communication is connected to the port SFP 0 (UP) on
the controller.

2. Generate the bitstream, as explained in the dedicated section above.

3. Load the bitstream on the imperix controller via Cockpit.

4. Download the user application template in Simulink or PLECS (or use your own
model). If you use your own model, it is recommended to add probes on the

https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_opalrt_gen_scripts.zip
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_plexim_gen_scripts.zip
https://imperix.com/doc/software/probe-variable

exchanged signals (see the screenshots in the user application template
section for reference).

5. Build the model and launch it on the imperix controller via Cockpit.

6. Compile/build the code for the third-party simulator and launch it.
Applications are provided for several vendors in the dedicated pages listed in
the Supported devices section above. Refer to the vendor’s documentation for
advanced guidance and details.

7. Use Cockpit to monitor the exchanged signals.

Address mapping

As introduced in the setup overview, the internal CPU-FPGA communication in
imperix controllers is managed by the SBIO bus. This topic is explored in details in
Exchanging data between the CPU and the FPGA.

As they correspond to 16-bit words, SBI and SBO addresses are grouped by two to
transfer the 32-bit words of the payload, starting at address 0. For instance, the first
word to be transmitted must be written in the SBO 1 (MSB) and SBO 0 (LSB), and the
first word received from the simulator is available in SBI 1 (MSB) and SBI 0 (LSB).

The number of signals to transmit to the third-party device must be specified in SBO
255. Similarly, the number of received signals is available in SBI 255.

SBO address Transmitted signals SBI address Received signals
(tx payload) (rx payload)

1 0 tx_signal 00 1 0 rx_signal 00

3 2 tx_signal_o1 3 2 rx_signal_o1
63 62 tx_signal_ 31 63 62 rx_signal 31
(free for extension) (free for extension)

- 255 n_tx_signals - 255 n_rx_signals

To go further

How to exchange more signals

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS

The current implementation supports the exchange of 32 signals in each direction.
This section describes how to extend the number of signals.

1.

Change the number of ports of the provided VHDL driver.

The driver is located in <folder>/hdl/sfp_aurora_rtbox.vhd and the
instructions are clearly indicated at the top of the file. These changes are
basically consist in adding more ports, insert them in the interfaces and link
their value with the two internal arrays.

. Adapt the surrounding modules.

Make sure that the surrounding modules support the desired number of
signals, namely the sbio_256_registers, convert_16b_to_32b and
convert_32b_to_16b modules. Do not forget to extend the length of the
axis_data_fifo_0 FIFO.

. Regenerate the bitstream.
. Adapt the Simulink model.

Add the corresponding SBI and SBO blocks in the Simulink model.

. Make sure that the third-party device is configured accordingly.

How to assign a different SFP port

In the provided implementation, the communication with the RT-Box is configured on
the SFP port 0 (UP). To assign the SFP communication to another SFP port (e.g., SFP
1 (DOWNO)):

1.

Open the Vivado project.

2. Change the enabled SFP port.

Double-click on the IX IP block in the block diagram to open the configuration
panel. Once opened, in the Using SFP from sandbox tab, check the entry of the
desired SFP port and uncheck the entry for SFP 0.

This will re-enable RealSync on port 0 (UP) and disable it on the selected port.
Concretely, it automatically removes the txn_0, txp_0, rxn_0, rxp_0 ports of the
imperix firmware IP and exposes the ports of the selected SFP port instead.

Re-customize IP *
IMPERIX_FW (3.10) '

Q Documentation IP Location

() show disabled ports Component Name |[XIP

e I
Fm; : H Using SFP from sandbox Saving FPGA resources

+I
s i
o | SFP ports
ane

o mn | [_] Disable RealSync on SFP 0 (UP) and make it available from the sandbox

= miag eeay |
i gt s [v] Disable RealSync on SFP 1 (DOWN 0) and make it available from the sandbox
Hona e
- I::\m:m :.:;‘: - I:I Disable RealSync on SFP 2 (DOWHN 1) and make it available from the sandbox
o i e etizy wisa o
——— Click on the documentation button to learn more on how to use the SFP ports.

i

e anma
=, dorm, o o [~
.t i [
gy, =

OK | | Cancel

3. Connect the ports.
Connect the four ports exposed during step 3 to the Aurora IP, as illustrated

below.
IXIP
usr +|||
FIXED_I0 + |||
ooR + |||
et +||
cLock o +|||
crock_1 +|||
cLock_2 +|||
cLock s +|||
s810_BUS + || aurora_64b66b_0
ADC
+l =+ USER_DATA_S_AXIS_TX
= m150] BBOX + ||| Ill+ core_controL
= gpi[15:0) - clis0_mhz = [ll— eT_seriaL_rx
= private_in[30:0] clk_250_mhz f= > rxr:[ﬂ'(l] - USER_DATA_M_AXIS RX + =
o data_valid_pulse — CORE_STAT i
mn_1 a_val _Pube » mxp[0:0] CORE_STATUS + ||
p_ Y = refelki_in GT_SERIAL_TX — |||
= sb_pwm[31:0] puwm([31:0] = B T BN[0:0] B e
w user_fw_id[15:0] gpo[15:0] jm syne ek txp[0:0] B
oversampling_pulse = a r:se;_pb t out clk =
tate[1:0 —_—
Cpu_core_s| E£ |: ™~ - pma_init link_resel_out =
fau -
a = drp_clk_in sys_reset_out ==
rxn
—1 - init_clk
vt t";:}) = gt_gpliclk_quadi_in
-
private_out]] = gt_gplirefclk_guadi_in
adc_done_cpu_pulse =
adc_done_pulse = ' Aurora 64BEEB
sampling_pulse =
reading =
IMPERIX_FW

4. Regenerate the bitstream.

Implementation details

For advanced users willing to understand the current implementation of the SFP
communication down to the details or modify it for their own needs, please note that:

https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_config_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_config_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_ixip_sfp_ports_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_ixip_sfp_ports_1.png

The transmission is triggered once per control period, as soon as the SBIO
values are ready (i.e., when data_valid_pulse is high).

The triggering of the transmission is ignored during an ongoing transmission.
Received frames with an invalid checksum are dropped by the Plexim IP (called
rtbox_aurora_adapter in the block design). This can be manually changed by
double-clicking on the IP and uncheck the ‘Drop packages with invalid
checksum’ checkbox.

The rx_v1d signal is available at the output of the driver. This signal is
asserted during one cycle at the exact instant the registers of RX_SIGNALS are
updated with the content of a new frame.

The driver and the FIFOs are reset each time the code is launched on the target
(i.e., when sync_pulse is high).

