
SFP communication with third-party devices

PN109 | Posted on January 22, 2026 | Updated on February 2, 2026

François LEDENT

Development Engineer

•

Table of Contents

SFP, Aurora and imperix

Setup overview

Supported devices

User application template

Generate the bitstream

Startup procedure

Address mapping

To go further

How to exchange more signals

How to assign a different SFP port

Implementation details

While imperix controllers are typically programmed by building applications in

Simulink or PLECS, imperix also provides direct access to FPGA resources through

its FPGA development environment, known as the sandbox.

This level of access enables a wide range of applications, including direct control of

the controller transceivers and the implementation of Aurora communication over

the physical SFP ports. Such flexibility makes it well suited to accommodate the

diverse Aurora configurations used by major simulator vendors, such as OPAL-RT,

Plexim and RTDS.

This page explains how to set up this communication by combining a user

application running on the CPU with additional logic in the FPGA bitstream. For a

quick and straightforward integration, a ready-to-use user application template is

provided, along with generation scripts to easily generate the bitstreams for several

vendors.

https://www.linkedin.com/in/francois-ledent/

This page is designed for users interested in Aurora communication and does not

require any prior experience with FPGA programming.

For now, this page applies to the following imperix controllers: B-Box RCP 3.0, B-

Board PRO, Programmable Inverter (TPI).

SFP, Aurora and imperix

With three Small Form-factor Pluggable (SFP) ports, the imperix controllers are

naturally built for

multi-devices topologies, such as wide multi-master and master-slave RealSync

networks.

To fully leverage these high-speed SFP connections, the Aurora protocol from Xilinx

provides a lightweight, high-throughput protocol. By using native transceivers with

minimal overhead, Aurora delivers low latency and near line-rate performance

without the complexity of protocols like Ethernet, making it an efficient and practical

choice for high-bandwidth, point-to-point links.

Although simple, Aurora requires identical configurations at both ends of the link.

This usually makes interoperability between devices from different vendors

challenging, as vendors often opt for slightly different settings.

To avoid this bottleneck and remain compatible with all (or most) Aurora-compatible

devices on the market, imperix gives full access to the SFP ports. Off-the-shelf

drivers and synthesis-ready Vivado projects are provided for various vendors such as

Plexim, OPAL-RT and RTDS, along with simple loopback and more advanced

examples.

Setup overview

The setup considered to exchange data with a third-party device is depicted below. It

is composed of three main parts: the user application, the FPGA bitstream and the

third-party application.

https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/power/programmable-inverter/
https://imperix.com/technology/low-latency-communication/
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/aurora8b10b.html

The user application is running in the CPU of the imperix controller and contains the

code designed by the user, typically a control algorithm. This application has no

special requirements, except that it contains SBO blocks to send data to the driver

and SBI blocks to access incoming data from the SFP connection.

The FPGA bitstream defines the logic executed on the imperix controller’s FPGA.

Together with the controller firmware, it implements the functionality required for

Aurora communication. The core components of this communication are the driver,

FIFOs and the Xilinx Aurora IP:

The driver receives the outgoing data from the user application through the

SBO blocks, packages it into frames compatible with the third-party simulator

and transfers the frames to the Aurora IP. In parallel, it receives incoming

frames from the Aurora IP, decodes them and makes the values available to the

user application via SBI blocks.

The FIFOs are essential for the clock domain crossing. It makes the bridge

between the main clock domain of imperix controllers, running at 250 MHz, to

the clock domain of the Aurora IP. The frequency of the Aurora IP depends on

the configuration of the Aurora channel and is therefore different for each

vendor.

The Aurora IP is provided by Xilinx. As explained in its presentation page, the IP

enables easy implementation of transceivers while providing a light-weight

user interface on top of which designers can build a serial link.

Because major market vendors use different Aurora channel configurations and, in

some cases, specific frame structures, the bitstream is vendor-specific and must be

generated using the corresponding generation scripts.

Finally, the third-party application runs on a third-party device and is not directly

related to imperix products. In this example, it is required that the application

enables an Aurora communication on an SFP port of the third-party simulator.

https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/aurora8b10b.html

More information about the CPU-FPGA communication can be found in Exchanging

data between the CPU and the FPGA.

Supported devices

The supported devices are listed below. Devices marked in bold have been expressly

tested and validated.

Vendor Compatible devices Related page(s)

OPAL-

RT
OP4510, OP4512 Aurora link with OPAL-RT via SFP

Plexim
RT-Box 1, RT-Box 2,

RT-Box 3
Aurora link with Plexim via SFP

RTDS GTSOC V2
SFP communication with an RTDS

MMC simulator (*)

(*) For this device, the communication chain, driver and address mapping differ in

order to match the frame structure expected by the MMC model running on the

GTSOC V2.

The Aurora configuration applied by each vendor is summarized in the following

table.

Vendor
Aurora

protocol

Line rate

(Gbps)
Endianness

CRC

check

Frame

structure

OPAL-

RT

Aurora

8B10B
5 Little Yes –

Plexim
Aurora

64B66B
6.25 Big Yes Custom

RTDS
Aurora

8B10B
2 Little No Custom

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/aurora-link-with-opal-rt-via-sfp
https://imperix.com/doc/help/aurora-link-with-plexim-via-sfp
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_third_parties_alt-1024x268.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_third_parties_alt-1024x268.png

User application template

As mentioned, the user application has no special requirements, except that it

contains SBO and SBI blocks to communicate with the driver running in the FPGA.

For a quick start, a simple user application template that sends and receives three

signals via SFP is provided below as a starting point, either in Simulink or PLECS:

Download aurora_ix_template.slx

Download aurora_ix_template.plecs

As presented in details in Exchanging data between the CPU and the FPGA, the

communication between the CPU and the FPGA is handled by the SBIO bus. Thanks

to the related SBI and SBO blocks, the CPU generates read and write requests on the

SBIO bus and interacts with the registers located in the FPGA.

As the SBIO bus is intended to carry 16-bit data, the 32-bit values are split into two

16-bit words to be transferred over the bus. The conversion is handled by the

single2sbo and sbi2single Matlab/C-Script functions.

The address mapping is detailed in the dedicated section below.

https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_simulink-1024x436.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_simulink-1024x436.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_plecs.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_user_application_plecs.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga

To build the user application, make sure that the Automated Code Generation mode

is selected in the CONFIG block and press Ctrl+B (Simulink) or Ctrl+Alt+B and

then Build (PLECS).

Generate the bitstream

To generate the bitstream running in the imperix controller, please follow the steps

outlined below:

1. Install the Vivado Design Suite (version 2022.1 is recommended). The step-by-

step installation procedure is detailed in Installation of AMD Xilinx Vivado

Design Suite.

2. Download the imperix source files (version 3.10 Rev. 0 or later is mandatory).

The source files are available for free at Download of the imperix firmware IP

for FPGA sandbox.

3. Download the generation scripts corresponding to the targeted vendor in the

table below and mimic the procedure of this page to generate the bitstream

from the scripts.

Vendor Compatible devices Generation scripts

OPAL-

RT
OP4510, OP4512 aurora_ix_opalrt_gen_scripts.zip

Plexim
RT-Box 1, RT-Box 2, RT-

Box 3
aurora_ix_plexim_gen_scripts.zip

The provided FPGA logic is connected to the port SFP 0 (UP) and supports the

exchange of up to 32 signals in each direction. To extend the number of signals or

assign another SFP port, refer to the How to extend more signals and How to assign

a different SFP port sections below.

Startup procedure

To start using the setup and exchange data with the third-party device:

1. Connect the imperix controller to the third-party simulator with an SFP cable.

By default, the Aurora communication is connected to the port SFP 0 (UP) on

the controller.

2. Generate the bitstream, as explained in the dedicated section above.

3. Load the bitstream on the imperix controller via Cockpit.

4. Download the user application template in Simulink or PLECS (or use your own

model). If you use your own model, it is recommended to add probes on the

https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_opalrt_gen_scripts.zip
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_plexim_gen_scripts.zip
https://imperix.com/doc/software/probe-variable

exchanged signals (see the screenshots in the user application template

section for reference).

5. Build the model and launch it on the imperix controller via Cockpit.

6. Compile/build the code for the third-party simulator and launch it.

Applications are provided for several vendors in the dedicated pages listed in

the Supported devices section above. Refer to the vendor’s documentation for

advanced guidance and details.

7. Use Cockpit to monitor the exchanged signals.

Address mapping

As introduced in the setup overview, the internal CPU-FPGA communication in

imperix controllers is managed by the SBIO bus. This topic is explored in details in

Exchanging data between the CPU and the FPGA.

As they correspond to 16-bit words, SBI and SBO addresses are grouped by two to

transfer the 32-bit words of the payload, starting at address 0. For instance, the first

word to be transmitted must be written in the SBO 1 (MSB) and SBO 0 (LSB), and the

first word received from the simulator is available in SBI 1 (MSB) and SBI 0 (LSB).

The number of signals to transmit to the third-party device must be specified in SBO

255. Similarly, the number of received signals is available in SBI 255.

SBO address
Transmitted signals

(tx payload)
SBI address

Received signals

(rx payload)

1 0 tx_signal_00 1 0 rx_signal_00

3 2 tx_signal_01 3 2 rx_signal_01

… …

63 62 tx_signal_31 63 62 rx_signal_31

(free for extension) (free for extension)

– 255 n_tx_signals – 255 n_rx_signals

To go further

How to exchange more signals

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS

The current implementation supports the exchange of 32 signals in each direction.

This section describes how to extend the number of signals.

1. Change the number of ports of the provided VHDL driver.

The driver is located in <folder>/hdl/sfp_aurora_rtbox.vhd and the

instructions are clearly indicated at the top of the file. These changes are

basically consist in adding more ports, insert them in the interfaces and link

their value with the two internal arrays.

2. Adapt the surrounding modules.

Make sure that the surrounding modules support the desired number of

signals, namely the sbio_256_registers, convert_16b_to_32b and

convert_32b_to_16b modules. Do not forget to extend the length of the

axis_data_fifo_0 FIFO.

3. Regenerate the bitstream.

4. Adapt the Simulink model.

Add the corresponding SBI and SBO blocks in the Simulink model.

5. Make sure that the third-party device is configured accordingly.

How to assign a different SFP port

In the provided implementation, the communication with the RT-Box is configured on

the SFP port 0 (UP). To assign the SFP communication to another SFP port (e.g., SFP

1 (DOWN0)):

1. Open the Vivado project.

2. Change the enabled SFP port.

Double-click on the IX IP block in the block diagram to open the configuration

panel. Once opened, in the Using SFP from sandbox tab, check the entry of the

desired SFP port and uncheck the entry for SFP 0.

This will re-enable RealSync on port 0 (UP) and disable it on the selected port.

Concretely, it automatically removes the txn_0, txp_0, rxn_0, rxp_0 ports of the

imperix firmware IP and exposes the ports of the selected SFP port instead.

3. Connect the ports.

Connect the four ports exposed during step 3 to the Aurora IP, as illustrated

below.

4. Regenerate the bitstream.

Implementation details

For advanced users willing to understand the current implementation of the SFP

communication down to the details or modify it for their own needs, please note that:

https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_config_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_config_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_ixip_sfp_ports_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_vivado_ixip_sfp_ports_1.png

The transmission is triggered once per control period, as soon as the SBIO

values are ready (i.e., when data_valid_pulse is high).

The triggering of the transmission is ignored during an ongoing transmission.

Received frames with an invalid checksum are dropped by the Plexim IP (called

rtbox_aurora_adapter in the block design). This can be manually changed by

double-clicking on the IP and uncheck the ‘Drop packages with invalid

checksum’ checkbox.

The rx_vld signal is available at the output of the driver. This signal is

asserted during one cycle at the exact instant the registers of RX_SIGNALS are

updated with the content of a new frame.

The driver and the FIFOs are reset each time the code is launched on the target

(i.e., when sync_pulse is high).

