
Aurora link with OPAL-RT via SFP

PN110 | Posted on January 22, 2026 | Updated on February 2, 2026

François LEDENT

Development Engineer

•

Table of Contents

Case study

Required software

Downloads

OP4510 project

Simulink model

Two SFP interfaces

Import in RT-LAB

Communication chain

Overview

Vivado project

Modules/IPs description

Aurora parameters

Experimental validation

Physical setup

Software-side setup

Real-time monitoring

An introduction to Aurora communication with third-party devices is available in Aurora

link with third-parties via SFP. This page extends that overview by presenting a practical

example of SFP communication with OPAL-RT simulators, specifically the OP4510 and

OP4512.

The proposed example relies on the user application and bitstream generation scripts

introduced previously, and includes a fully functional RT-LAB project for the OPAL-RT

simulator.

To support a broader range of use cases, the RT-LAB project deployed on the OPAL-RT

target instantiates two SFP interfaces. The first interface is managed by eHS, OPAL-RT’s

https://www.linkedin.com/in/francois-ledent/
https://imperix.com/doc/help/sfp-communication-with-third-party-devices
https://imperix.com/doc/help/sfp-communication-with-third-party-devices
https://www.opal-rt.com/software/software-toolboxes/ehs/

FPGA-based electrical toolbox and solver, while the second interface is controlled by the

simulator’s CPU.

A simple loopback configuration is used to illustrate the setup: a three-phase sine wave

is transmitted from the imperix controller, multiplied by two within the OPAL-RT

simulator, and then sent back to the controller.

A page introducing the SFP communication with Plexim devices through a similar

loopback example is available at Aurora link with Plexim via SFP.

Case study

This case study demonstrates a straightforward signal processing loop:

The controller generates a three-phase sine wave which is transmitted to the

OP4510 via the Aurora protocol.

Upon receipt, the OP4510 applies a gain of 2 to the three signals – doubling the

amplitude of the sine wave – and returns them to the controller.

Finally, the original transmitted values and the received return signals are

compared in real-time in Cockpit, showing the proper operation of the system.

Required software

Vivado Design Suite (version 2022.1 is recommended)

The Xilinx installation page details the installation procedure.

FPGA sandbox template 3.10 or later.

Available on the FPGA download page.

C++ or ACG SDK version 2024.3 or later.

Available on the SDK download page.

https://imperix.com/doc/help/aurora-link-with-plexim-via-sfp
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_aurora_loopback_example_op4510-1024x514.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_aurora_loopback_example_op4510-1024x514.png
https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/downloads/

On the third-party side, this project has been tested with an OP4510, RT-LAB

2024.1.6.55 and Matlab 2022B.

Downloads

As explained in setup overview, the SFP communication with any third-party device

requires the three following software parts:

The user application, running in the imperix controller’s CPU, provided as a

Simulink or PLECS script.

The FPGA bitstream, running in the imperix controller’s FPGA, provided as

generation scripts. The scripts must be launched with Vivado to create a ready-to-

use project.

The OP4510 application, provided as an RT-LAB archive.

User application FPGA bitstream OP4510 application

aurora_ix_template.slx

aurora_ix_template.plecs
aurora_ix_opalrt_gen_scripts.zip aurora_ix_opalrt_rtlab.zip

Further details on Aurora communication for the OP4510 and OP4512 from OPAL-RT are

provided below.

Download OPAL_RT_Aurora_Documentation.pdf

OP4510 project

The OP4510 project is provided as a ZIP archive that can be imported in RT-Lab, which

contains the OP4510’s model, firmware, eHS model and configuration files.

Simulink model

The Simulink model contains the two main subsystems:

SC_Console (left) to control and monitor signals in real-time.

SM_Controller (right) that contains the OP4510 control program.

https://imperix.com/doc/help/sfp-communication-with-third-party-devices#setup-overview
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_opalrt_gen_scripts.zip
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_opalrt_rtlab.zip
https://imperix.com/doc/wp-content/uploads/2026/01/OPAL_RT_Aurora_Documentation.pdf
https://imperix.com/doc/wp-content/uploads/2026/01/OPAL_RT_Aurora_Documentation.pdf

SC_Console subsystem

in the OP4510’s Simulink model

SM_Controller subsystem

in the OP4510’s Simulink model

The SM_Controller subsystem contains two SFP interfaces to access SFP either from

eHS (on port SFP CH00) or from the simulator’s CPU (on port SFP CH02). These

interfaces are described in the subsequent sections.

Real-time variables can be defined in the SC_Console subsystem as constants and

passed to the control logic of the SM_Controller subsystem (see the to_eHS ports in the

screenshots above). Although this example doesn’t use that mechanism, the related

ports and blocks are kept for easier future expansion of the model.

Two SFP interfaces

https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sc_console-1024x431.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sc_console-1024x431.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sm_controller_highlighted-1024x674.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sm_controller_highlighted-1024x674.png

To support different usage scenarios, this project provides two simultaneous SFP

interfaces, enabling communication either with eHS – the FPGA-based electrical toolbox

and solver from OPAL-RT – or with the simulator’s CPU. The characteristics of each

interface are summarized in the table below.

Additional details on using both interfaces can be found in the OPAL-RT documentation

available in the Downloads section.

Interface

name
Location Timestep Use case(s)

SFP

port

eHS FPGA

A few FPGA

cycles (depends

on the simulated

circuit)

Simulation of

power circuits only

(in eHS)

SFP

CH00

CPU CPU CPU period

Simulation of

power circuits or

any other use (in

Simulink)

SFP

CH02

From the imperix controller perspective, the choice of interface has no impact. In both

cases, the values are expected to be doubled in the OP4510.

Both communication interfaces run simultaneously. In this example, the imperix

controller has only one port dedicated to the Aurora communication with the OP4510,

meaning that one of the two OP4510’s ports should be left unconnected and simply

returns zeroes as incoming values.

eHS interface

The eHS circuit is designed from the Schematic Editor of OPAL-RT and directly

embedded in the Simulink model, as shown in the right capture of the Simulink model

section above. Double-click on the eHS ‘OpCtrl’ block to open the eHS circuit in the

Schematic Editor.

In the eHS circuit, controlled voltage sources are fed by the incoming SFP values and

placed in series with 0.5Ω resistors. The current flowing through the resistors is sent

back to the imperix controller.

https://www.opal-rt.com/software/software-toolboxes/ehs/
https://www.opal-rt.com/software/software-toolboxes/ehs/
https://opal-rt.atlassian.net/wiki/spaces/PSED/pages/67505185/The+Workbench

CPU interface

For the CPU-based SFP control method, the incoming values are simply manually

multiplied by two. As the ‘DataOut Recv’ and ‘DataIn Send’ blocks manipulate the data

as unsigned integers, a datatype conversion is applied upon reception and before

transmission in the OP4510.

Import in RT-LAB

To import the project, click on File > Import. Then, in the Import window, expand RT-LAB,

select Existing RT-LAB Project and click Next. In the next window, select Select archive

file and navigate to the location where the archive is locally stored. Finally, press Finish.

https://imperix.com/doc/wp-content/uploads/2026/01/pn110_ehs_circuit-1024x492.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_ehs_circuit-1024x492.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sm_controller_cpu_based.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_simulink_model_sm_controller_cpu_based.png

https://imperix.com/doc/wp-content/uploads/2026/01/pn110_rtlab_step_1.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_rtlab_step_1.png

Once the model is imported, double-click on it in the Project Explorer to open it.

Navigate to Models and double-click on the model. Then, in the main panel, successively

click on Build, Load and Execute.

During the loading phase, a new Simulink model is automatically created based on the

SC_Console subsystem. This model is intended to be used when the code is running to

control the constants and monitor data in real-time.

Open the scope when the code is running to observe the data exchanged between the

imperix controller and the OP4510. Change the monitored interface (eHS or CPU-based)

by setting the dedicated constant in the console.

Communication chain

Overview

The overview of the communication chain is presented in the setup overview.

https://imperix.com/doc/wp-content/uploads/2026/01/pn110_rtlab_step_3.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_rtlab_step_3.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#communication-chain-overview

The main clock domain always runs at 250 MHz, while the frequency of the Aurora clock

domain varies with the configuration of the Aurora IP. In this example, the frequency is

125 MHz with the configuration presented in the Aurora parameters section.

Vivado project

The Vivado project is provided in the form of generation scripts. As explained in the

Generate the bitstream section, the scripts automatically create and open the project

illustrated below. The bitstream can be directly generated by simply pressing Generate

Bitstream in the left navigation bar in the Vivado environment.

As provided, the driver supports the exchange of up to 32 signals in each direction and

the Aurora communication is linked to the SFP 0 (UP) port of the imperix controller.

Once generated, the bitstream can be loaded onto the imperix controller using Cockpit.

A reboot is required for the bitstream change to take effect.

To increase the number of exchanged signals or change the SFP port used for the

Aurora communication, please refer to How to exchange more signals and How to

assign a different SFP port.

Modules/IPs description

The Vivado project contains the following VHDL modules and IPs.

https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn109_driver_communication_chain-1024x483.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#generate-the-bitstream
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_vivado_project_opalrt-1024x298.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_vivado_project_opalrt-1024x298.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-exchange-more-signals
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-assign-a-different-sfp-port
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-assign-a-different-sfp-port

Module name Type Description

sbio_256_registers
VHDL

module

Instantiates and provides access to

SBIO bus registers in the FPGA. See

Exchanging data between the CPU and

the FPGA for more details.

convert_16b_to_32b
VHDL

module

Converts the 16-bit words of the SBIO

bus back into the 32-bit words of the

payload.

aurora_ix_opalrt_driver
VHDL

module

Custom driver provided by imperix to

communicate with the OP4510 from

OPAL-RT ; mainly acts are a parallel-to-

serial transmitter and serial-to-parallel

receiver.

convert_32b_to_16b
VHDL

module

Converts the 32-bit words received

from the OP4510 through the driver

into 16-bit words compatible with the

SBIO bus.

latcher
VHDL

module

Ensures data coherency by preventing

the update of the SBI registers while

the CPU is reading.

AXI4-Stream Data

FIFO

Vivado

IP

(Xilinx)

Handles the clock domain crossing

between the main 250 MHz domain of

the imperix firmware and the Aurora

clock domain ; buffers the frame in the

transmission direction.

Aurora 8B10B

Vivado

IP

(Xilinx)

Handles the Aurora communication

and interfaces with the underlying

hardware logic.

Utility Vector Logic

Vivado

IP

(Xilinx)

Converts the active-high reset signal

from the sync_pulse into an active-low

reset signal for the FIFOs.

Aurora parameters

To establish communication with the OP4510, the Aurora IP must be configured with the

parameters listed below. Any settings not specified here should remain at their default

values.

Protocol Aurora 8B10B Interface Framing

Line Width (Bytes) 4 Flow Control None

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS

Line Rate (Gbps) 5 Little Endian Support Yes

Dataflow Mode Duplex CRC Yes

Experimental validation

Physical setup

The physical setup is straightforward:

1. Connect both devices to the network, so that they can be configured and

monitored from the PC.

2. Connect the imperix controller to the OP4510 with an SFP cable. As provided, this

example considers the port SFP 0 (UP) on the controller and SFP CH00 (eHS) or

SFP CH02 (CPU) on the OP4510.

3. Turn on the two devices.

Software-side setup

To experimentally validate the system:

1. Download the three software parts available in the downloads section.

2. Import the project in RT-LAB. Build, load and execute it on the OP4510, as

explained in the Import in RT-LAB section above.

3. Generate the bitstream for the imperix controller.

4. Load the bitstream on the imperix controller via Cockpit.

5. Build the user application template and launch it on the imperix controller via

Cockpit.

6. Use Cockpit to monitor the exchanged signals.

The whole system should now be running.

Real-time monitoring

Connect to the imperix controller with Cockpit. Add a scope in the project (from the

Modules tab in the top bar) and drag-and-drop the variables of interest.

The exchanged signals can now be monitored in real-time in Cockpit. As expected, the

amplitude of the transmitted signals is multiplied by two in the OP4510.

https://imperix.com/doc/help/sfp-communication-with-third-party-devices#generate-the-bitstream
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#user-application-template

The exchanged signals can also be monitored from the OP4510, as described in the

Import in RT-LAB section. If the real-time signals stay at 0, ensure that the constant in

the real-time console selects the right interface (1 for eHS, 0 for CPU).

https://imperix.com/doc/wp-content/uploads/2026/01/pn111_cockpit-1024x616.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_cockpit-1024x616.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_op4510_scope.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_op4510_scope.png

