
Aurora link with Plexim via SFP

PN111 | Posted on January 22, 2026 | Updated on February 2, 2026

François LEDENT

Development Engineer

•

Table of Contents

Case study

Required software

Downloads

RT-Box application

Communication chain

Overview

Vivado project

Modules/IPs description

Aurora parameters

Plexim-specific notes

Experimental validation

Physical setup

Software-side setup

Real-time monitoring

An introduction to Aurora communication with third-party devices is available in Aurora link

with third-parties via SFP. This page extends that overview by presenting a practical example

of SFP communication with Plexim simulators, specifically the RT-Box 1, RT-Box 2 and RT-Box

3.

The proposed example relies on the user application and bitstream generation scripts

introduced previously, and includes a fully functional PLECS model for the RT-Box simulator.

A simple loopback configuration is used to illustrate the setup: a three-phase sine wave is

transmitted from the imperix controller, multiplied by two within the RT-Box simulator, and

then sent back to the controller.

A page introducing the SFP communication with OPAL-RT devices through a similar

loopback example is available at Aurora link with OPAL-RT via SFP.

https://www.linkedin.com/in/francois-ledent/
https://imperix.com/doc/help/sfp-communication-with-third-party-devices
https://imperix.com/doc/help/sfp-communication-with-third-party-devices
https://imperix.com/doc/help/aurora-link-with-opal-rt-via-sfp

Case study

This case study demonstrates a straightforward signal processing loop:

The controller generates a three-phase sine wave which is transmitted to the OP4510

via the Aurora protocol.

Upon receipt, the OP4510 applies a gain of 2 to the three signals – doubling the

amplitude of the sine wave – and returns them to the controller.

Finally, the original transmitted values and the received return signals are compared in

real-time in Cockpit, showing the proper operation of the system.

Required software

Vivado Design Suite (version 2022.1 is recommended)

The Xilinx installation page details the installation procedure.

FPGA sandbox template 3.10 or later.

Available on the FPGA download page.

C++ or ACG SDK version 2024.3 or later.

Available on the SDK download page.

This project has been tested with a Plexim RT-Box 1 and PLECS 4.5.9.

Downloads

As explained in setup overview, the SFP communication with any third-party device requires

the three following software parts:

The user application, running in the imperix controller’s CPU, provided as a Simulink or

PLECS script.

The FPGA bitstream, running in the imperix controller’s FPGA, provided as generation

scripts. The scripts must be launched with Vivado to create a ready-to-use project.

The RT-Box application, provided as a simple PLECS model.

https://imperix.com/doc/wp-content/uploads/2026/01/pn110_aurora_loopback_example_op4510-1024x514.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn110_aurora_loopback_example_op4510-1024x514.png
https://imperix.com/doc/help/vivado-design-suite-installation?currentThread=getting-started-with-fpga-programming
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox?currentThread=getting-started-with-fpga-programming
https://imperix.com/downloads/
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#setup-overview

User application FPGA bitstream RT-Box application

aurora_ix_template.slx

aurora_ix_template.plecs
aurora_ix_plexim_gen_scripts.zip aurora_ix_plexim_rtbox.plecs

RT-Box application

The application running in the RT-Box simply reads the values from the imperix controller,

multiplies them by a gain of 2, and sends them back to the imperix controller. A scope is

added to enable the real-time control of the setup via the External Mode of the RT-Box.

The SFP In block is configured to read 3 signals from the SFP A port of the RT-Box. The SFP

Out block is also configured on SFP A.

To build and load the model on the RT-Box, press Ctrl+Alt+B to open the Coder Options menu.

In the Target tab, configure the target type and IP, and enable the External Mode via the

checkbox. Then, navigate to the External Mode tab and press Build.

To launch the acquisition using the External Mode of the RT-Box, wait for the code to be built

and loaded, then press Connect and Activate autotriggering.

https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.slx
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_template.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_plexim_gen_scripts.zip
https://imperix.com/doc/wp-content/uploads/2026/01/aurora_ix_plexim_rtbox.plecs
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_plecs_model_rtbox.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_plecs_model_rtbox.png

The code should now be running in the RT-Box and the scope acquisition started (showing

only zeroes if the imperix controller is not yet configured).

Communication chain

Overview

The overview of the communication chain is presented in the setup overview. However, for

Plexim, the logic is slightly different: a proprietary IP is added in the design, between the

FIFOs and the Aurora IP. This IP implements an additional layer of encapsulation to comply

with the frame structure expected by the RT-Box.

https://imperix.com/doc/wp-content/uploads/2026/01/pn111_rtbox_target_tab.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_rtbox_target_tab.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_rtbox_external_mode_tab.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_rtbox_external_mode_tab.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#communication-chain-overview

The IP provided by Plexim is named rtbox_aurora_adapter in Vivado.

The main clock domain always runs at 250 MHz, while the frequency of the Aurora clock

domain varies with the configuration of the Aurora IP. In this example, the frequency is

97.656 MHz with the configuration presented in the Aurora parameters section.

Vivado project

The Vivado project is provided in the form of generation scripts. As explained in the Generate

the bitstream section, the scripts automatically create and open the project illustrated below.

The bitstream can be directly generated by simply pressing Generate Bitstream in the left

navigation bar in the Vivado environment.

As provided, the driver supports the exchange of up to 32 signals in each direction and the

Aurora communication is linked to the SFP 0 (UP) port of the imperix controller.

Once generated, the bitstream can be loaded onto the imperix controller using Cockpit. A

reboot is required for the bitstream change to take effect.

To increase the number of exchanged signals or change the SFP port used for the Aurora

communication, please refer to How to exchange more signals and How to assign a different

SFP port.

Modules/IPs description

https://imperix.com/doc/wp-content/uploads/2026/01/pn111_driver_communication_chain_plexim-1024x471.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_driver_communication_chain_plexim-1024x471.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#generate-the-bitstream
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#generate-the-bitstream
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_vivado_project_plexim-1024x342.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_vivado_project_plexim-1024x342.png
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-exchange-more-signals
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-assign-a-different-sfp-port
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#how-to-assign-a-different-sfp-port

The Vivado project contains the following VHDL modules and IPs.

Module name Type Description

sbio_256_registers
VHDL

module

Instantiates and provides access to SBIO

bus registers in the FPGA. See Exchanging

data between the CPU and the FPGA for

more details.

convert_16b_to_32b
VHDL

module

Converts the 16-bit words of the SBIO bus

back into the 32-bit words of the payload.

sfp_aurora_rtbox_driver
VHDL

module

Custom driver provided by imperix to

communicate with the RT-Box from Plexim

; mainly acts are a parallel-to-serial

transmitter and serial-to-parallel receiver.

convert_32b_to_16b
VHDL

module

Converts the 32-bit words received from

the RT-Box through the driver into 16-bit

words compatible with the SBIO bus.

latcher
VHDL

module

Ensures data coherency by preventing the

update of the SBI registers while the CPU is

reading.

AXI4-Stream Data FIFO

Vivado

IP

(Xilinx)

Handles the clock domain crossing

between the main 250 MHz domain of the

imperix firmware and the Aurora clock

domain ; buffers the frame in the

transmission direction.

rtbox_aurora_adapter

Vivado

IP

(Plexim

GmbH)

Slightly truncates the transmitted and

received frames to comply with the RT-Box

requirements ; filters out the frames with

an invalid CRC ; handles the

synchronization mechanism when used

(here, not used).

Processor System

Reset

Vivado

IP

(Xilinx)

Handles reset signals to properly initialize

the Aurora IP.

Aurora 64B66B

Vivado

IP

(Xilinx)

Handles the Aurora communication and

interfaces with the underlying hardware

logic.

Clocking Wizard

Vivado

IP

(Xilinx)

Handles the clock signals, providing the

Aurora domain clock and adding proper

buffers.

Utility Vector Logic

Vivado

IP

(Xilinx)

Converts the active-high reset signal from

the sync_pulse into an active-low reset

signal for the FIFOs.

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS

Constant

Vivado

IP

(Xilinx)

Provides a constant high signal to

annihilate unused active-low reset signals.

Aurora parameters

To establish communication with Plexim devices, the Aurora IP must be configured with the

parameters listed below. Any settings not specified here should remain at their default

values.

Protocol Aurora 64B66B Flow Control None

Line Rate (Gbps) 6.25 Little Endian Support No

Dataflow Mode Duplex CRC Yes

Interface Framing DRP Mode Disabled

Plexim-specific notes

Received frames with an invalid checksum are dropped by the Plexim IP. This behavior

can be changed manually by double-clicking the rtbox_aurora_adapter Plexim IP in

Vivado and unchecking the Drop packages with invalid checksum checkbox.

An additional rx_CRC_check_ok signal is available at the output of the driver. This

output is updated simultaneously with rx_vld and indicates if the frame has a valid

CRC. If invalid frames are dropped by the Plexim IP (see previous item), the

CRC_check_ok is expected to be always high.

Experimental validation

Physical setup

The physical setup is straightforward:

1. Connect both devices to the network, so that they can be configured and monitored

from the PC.

2. Connect the imperix controller to the RT-Box with an SFP cable. As provided, this

example considers the port SFP 0 (UP) on the controller and SFP A on the RT-Box.

3. Turn on the two devices.

Software-side setup

To experimentally validate the system:

1. Download the three software parts available in the downloads section.

2. Build and load the RT-Box application on the RT-Box.

3. Generate the bitstream for the imperix controller.

4. Load the bitstream on the imperix controller via Cockpit.

5. Build the user application template and launch it on the imperix controller via Cockpit.

6. Use Cockpit to monitor the exchanged signals.

The whole system should now be running.

Real-time monitoring

Connect to the imperix controller with Cockpit. Add a scope in the project (from the Modules

tab in the top bar) and drag-and-drop the variables of interest.

The exchanged signals can now be monitored in real-time in Cockpit. As expected, the

amplitude of the transmitted signals is multiplied by two in the RT-Box.

The exchanged signals can also be monitored from the RT-Box, using the External Mode, as

described in the RT-Box application section.

https://imperix.com/doc/help/sfp-communication-with-third-party-devices#generate-the-bitstream
https://imperix.com/doc/help/sfp-communication-with-third-party-devices#user-application-template
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_cockpit-1024x616.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_cockpit-1024x616.png

https://imperix.com/doc/wp-content/uploads/2026/01/pn111_external_mode_rtbox_scope.png
https://imperix.com/doc/wp-content/uploads/2026/01/pn111_external_mode_rtbox_scope.png

