
Imperix firmware IP product guide

PN116 | Posted on March 26, 2021 | Updated on July 24, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

The imperix firmware IP

IP port descriptions

Digital I/Os drivers

Private ports

User interfaces

Understanding the real-time behavior of the firmware

The four phases of a control cycle

Executing the FPGA-based algorithm faster than the CPU

Exchanging data between the CPU and the FPGA

Configuration phase

Real-time execution

Retrieving ADC conversion results

Driving PWM outputs

IP configuration

Download

This page documents the imperix firmware IP for Xilinx Vivado, which contains the

imperix FPGA logic of the imperix controllers, namely the B-Box RCP, the B-Board

PRO, the B-Box Micro and the TPI.

The imperix firmware IP enables the user to:

Exchange data between the application control code running in the CPU (PS)

and the logic in the FPGA (PL);

Drive the PWM output chain, comprised of a dead-time generation system and

the hardware protection mechanisms;

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/power-inverter-controller/
https://imperix.com/products/power/programmable-inverter/

Retrieve ADC conversion results as soon as they are available, directly from

within the FPGA;

Have direct access to physical I/Os pins such as USR, GPI and GPO pins.

Prerequisite to use the imperix firmware IP

The getting started with FPGA page explains how to use the imperix IP in a

Vivado project

It is required to install Xilinx Vivado to use the imperix firmware IP

To exchange data with the FPGA and configure the PWM outputs, the necessary

drivers are included in ACG SDK (graphical programming) and CPP SDK (C++

programming)

The imperix firmware IP is available for download on the imperix IP download page.

To find all FPGA-related notes, you can visit FPGA development homepage.

https://imperix.com/doc/wp-content/uploads/2021/03/imperix_fw_ip.png
https://imperix.com/doc/wp-content/uploads/2021/03/imperix_fw_ip.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/getting-started-acg-sdk-simulink
https://imperix.com/doc/help/getting-started-cpp-sdk/installation-and-utilisation-of-cpp-sdk
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

The imperix firmware IP

The B-Board is based on a Xilinx Zynq XC7Z030 System-on-Chip which consists of a

Processing System area (PS) with two CPU cores and a Programmable Logic (PL)

area.

CPU0: Running on Linux, the first core is responsible for loading the application

code, supervising the system execution and managing the data logging.

CPU1: Running on BBOS (lightweight secured proprietary operating system), the

second core executes the application-level control code developed by the user.

FPGA: The PL contains all the application-specific peripherals.

The fixed part of the FPGA firmware containing the pre-implemented peripherals is

packaged in the imperix firmware IP. This IP also provides interfaces to the user as

illustrated by the user-programmable FPGA area on the image.

https://imperix.com/doc/wp-content/uploads/2021/03/image-157.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-157.png

The imperix firmware IP is designed such that it provides interfaces for implementing

special user HDL logic in the so-called sandbox. It gives access to some of the I/Os

(ADC, PWM,…) as well as ways to exchange data with the CPU (SBI, SBO).

The content of the imperix firmware IP is obfuscated and cannot be either read or

edited.

IP port descriptions

This section describes the ports of the imperix firmware IP.

Digital I/Os drivers

These ports drive the physical-digital I/Os of the B-Board. The description of the

peripherals driving these ports and the physical location of their I/Os are available in

the B-Board datasheet.

Name Direction
Clock

domain
Description

flt[15:0] input clk_250_mhz Fault inputs

gpi[15:0] input clk_250_mhz General-purpose inputs

gpo[15:0] output clk_250_mhz General-purpose outputs

pwm[31:0] output clk_250_mhz
Pulse-width modulated

outputs

https://imperix.com/doc/wp-content/uploads/2021/03/image-168-1024x679.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-168-1024x679.png
https://imperix.com/wp-content/uploads/document/B-Board_Datasheet.pdf

BBOX[51:0]
tristate

input/output
N/A

These pins are used

internally in the B-Box

RCP. They can be re-

purposed when using the

B-Board PRO on a

custom-made PCB

design, as explained in

PN201.

USR[35:0]
tristate

input/output
N/A

These 3.3V pins are

made available to the

user to interface external

peripherals, such as an

SPI ADC. They are

available from the B-

Board PRO Eval board

and from the B-Box RCP

VHDCI connector B. To

use these pins, please

refer to the Getting

Started with FPGA page.

Private ports

Name

private_in

private_out

DDR

FIXED_IO

These ports are necessary to communicate with the various components on the B-

Board. Modifying these connections could alter the proper behavior of the device.

User interfaces

The user interfaces include data ports and timing signals to exchange data with the

CPU, drive PWM outputs, and access ADC value.

Name Direction
Clock

domain
Description

https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/doc/help/b-board-pro-carrier-board
https://imperix.com/doc/implementation/fpga-based-spi-communication-ip
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development

ADC_reg_00[15:00] to

ADC_reg_15[15:00]
output clk_250_mhz

ADC 16-bit result in

2’s complement

format. If in a B-Box,

registers 00 to 15

hold the results the

B-Box (external)

ADCs. Otherwise,

registers 00 to 07

hold the results of

the B-Board on-board

ADCs and registers

08 to 15 return zero.

SBIO_BUS bidirectional clk_250_mhz

16-bit memory-

mapped bus allowing

the CPU to

addressing up to

1024 registers in the

FPGA. For more

details on SBIO_BUS,

see the Getting

Started with FPGA

page.

CLOCK_0_period[15:00] to

CLOCK_3_period[15:00]
output clk_250_mhz

Indicates the timer

period of the CLOCK.

CLOCK_0_prescaler[15:00]
to

CLOCK_3_prescaler[15:00]
output clk_250_mhz

Indicates the

prescaler division

value of the CLOCK.

CLOCK_0_clk_en to

CLOCK_3_clk_en
output clk_250_mhz

Clock enable

generated by the

prescaler, provides

the counting rate of

CLOCK_N_timer.

CLOCK_N_clk_en is

asserted one period

out of

CLOCK_N_prescaler.

CLOCK_0_timer[15:00] to

CLOCK_3_timer[15:00]
output clk_250_mhz

Timer counting from

0 to

CLOCK_N_period at

CLOCK_N_clk_en
rate.

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS

reading output clk_250_mhz

Asserted for the

duration of the READ

phase, signaling that

SBI registers are

being read and

transferred towards

the CPU.

sampling_pulse output clk_250_mhz

Asserted for one

clock period at each

ADC sampling

instant.

sync_pulse output clk_250_mhz

Asserted for one

clock period at the

end of the

configuration phase

(end of system

startup sequence). It

may be used as a

synchronous reset. In

the case where

multiple B-Boards (B-

Boxes) are

connected, this pulse

occurs

simultaneously in all

devices and can be

used to synchronize

counters.

user_fw_id[15:00] input clk_250_mhz

User firmware

identification

number. When a

customized firmware

is loaded, this

number is sent to

Cockpit and is

available from the

Target config window

in the FPGA

bitstream section. It

can be used to

ensure that the

correct firmware has

been loaded.

The images below illustrate the behavior of the CLOCK interfaces.

Behavior of the CLOCK interface when prescaler=1

Behavior of the CLOCK interface when prescaler /= 1

Understanding the real-time behavior of the

firmware

A proper understanding of the system behavior during real-time execution is

necessary to correctly develop and integrate custom logic in the B-Board FPGA.

The four phases of a control cycle

The next figure is a simplified representation of the elements involved in the real-time

execution of the control algorithm on an imperix controller. It shows the four phases

constituting a control cycle, which are:

ACQ: Analog-to-digital conversion (physical chips) and results acquisition

(transfer to FPGA);

READ: Real-time DMA read, FPGA data flagged as real-time are sent to the CPU

read buffer;

PROCESSING: Execution by the CPU of the main control task, processing the

user control code. At the beginning of this phase, the CPU read buffer is read.

At the end, the CPU write buffer is updated.

WRITE: Real-time DMA write, data flagged as real-time are transferred from the

CPU write buffer to the FPGA peripherals (across the network of multiple B-

Boards if needed).

To learn more about the various delays involved when running an imperix digital

controller please read the discrete control delay identification page.

https://imperix.com/doc/wp-content/uploads/2021/03/image-158.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-158.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-159.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-159.png
https://imperix.com/doc/help/discrete-control-delay

The 4 phases of an imperix controller control cycle

The imperix firmware IP provide timing information, as shown in the next figure. The

_pulse signals are asserted only for one period of clk_250_mhz.

The sampling_pulse signal indicates the ADC sampling instant and the start

of the ACQ phase.

The adc_done_pulse signal indicates that the ACQ phases finished and new

ADC values are available in the ADC registers.

The reading signal indicates the start of the READ phase when SBI registers

flagged as real-time are sent to the CPU memory.

At the end of the WRITE phase data_valid_pulse is asserted notifying that

new data is available in the real-time SBO registers.

https://imperix.com/doc/wp-content/uploads/2021/08/schema_PS-PL-DA_v2.png
https://imperix.com/doc/wp-content/uploads/2021/08/schema_PS-PL-DA_v2.png

Timing information with no oversampling

Executing the FPGA-based algorithm faster than

the CPU

The ADC sampling is always linked to CLOCK_0 and can be configured using the

Configuration block. The control algorithm is generally executed after each new ADC

sample, so for the FPGA-based algorithm to run faster the sampling rate must be

increased. It may be done by:

Increasing the frequency of CLOCK_0 (recommended)

Setting an oversampling ratio (number of sampled per CLOCK_0 period)

A combination of both

Increasing the frequency of CLOCK_0

Increasing the frequency of CLOCK_0 is the recommended method to increase the

ADC sampling rate. Because the CPU is usually not able to run as fast as the FPGA,

using the CPU postscaler can be used to reduce the CPU control task rate. The CPU

postscaler can be configured in the Configuration block.

https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses-1024x416.png
https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses-1024x416.png
https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/software/config-control-task-configuration

Increased CLOCK_0 frequency, CPU postscaler = 4

Setting an oversampling ratio

Alternatively, an oversampling ratio may be set as illustrated below.

Make sure the new synchronous averaging option is disabled in the ADC blocks when

using an oversampling ratio. ADC channels with synchronous averaging enabled only

output a new value once per CLOCK_0 period.

Oversampling = 4

Exchanging data between the CPU and the FPGA

https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses_postscaler-1024x625.png
https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses_postscaler-1024x625.png
https://imperix.com/doc/help/synchronous-averaging
https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses_oversampling-1024x627.png
https://imperix.com/doc/wp-content/uploads/2024/04/Timing_pulses_oversampling-1024x627.png

The 16-bit Output towards the SandBox (SBI) and Input from the SandBox (SBO)

registers allow data exchange between the user control code in the CPU and the user

logic in the FPGA. These registers can be read/written using their respective blocks

(SBO and SBI).

The getting started with FPGA development page goes into further details on how to

exchange data between the CPU and the FPGA through a step-by-step example.

Configuration phase

The configuration phase occurs only once at the system startup and aims to initiate

FPGA-based peripherals and configure the real-time data traffic, possibly across the

control network. During this phase, interrupts and PWM operations are not yet active.

With the ACG SDK, sBO registers that are only written once are called configuration

registers, opposing to real-time registers. The user selects which registers are set as

configuration registers from the “Registers” tab of the SBO block and then sets up

their values from the “Configuration reg. values” tab. When using C++ SDK, the

SBI/SBO registers can be read/written during the configuration phase by using

Sbi_ReadDirectly or Sbo_WriteDirectly in the UserInit() function.

As their names indicate, the Sbi_ReadDirectly and Sbo_WriteDirectly functions

infer immediate data transfers, which are rather time-consuming performance-

wise and, therefore, cannot be used during real-time execution.

Real-time execution

Configuring a SBI or SBO register as a real-time register indicates that the value of

this register is to be transferred at each control task execution. Configuring a register

as real-time is done by using the C++ function Sbi_ConfigureAsRealTime or

Sbo_ConfigureAsRealTime.

In Simulink, real-time registers are clearly distinguished from configuration

registers. They take their run-time values from the block inputs.

Before entering the control interrupt, the data that have previously been configured as

real-time are retrieved from the FPGA peripherals and placed into the CPU read buffer

(READ phase). As such, they can readily be used from inside the control interrupt

using Sbi_Read.

Reciprocally, using the Sbo_Write function inside the control interrupt stores data

into the write buffer, waiting to be sent back to the FPGA once the interrupt is

completed (WRITE phase).

https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/help/getting-started-with-fpga-control-development

In Simulink real-time data can be easily manipulated using signal wires.

Simulink blocks for sandbox interfacing

Retrieving ADC conversion results

Inside the FPGA, ADC results are available from the ADC interface of the firmware IP.

The port sampling_pulse indicates the start of an ADC conversion and

adc_done_pulse indicates that the results are available in the ADC interface. The

conversion 16-bit results are in 2’s complement format.

More information regarding the hardware-level implementation is available in:

– The datasheets of B-Box RCP or B-Box Micro for laboratory devices.

– The datasheet of the B-Board PRO or PN201 for embedded systems.

https://imperix.com/doc/wp-content/uploads/2021/03/image-165.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-165.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-166.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-166.png
https://imperix.com/wp-content/uploads/document/B-Box_Datasheet.pdf
https://imperix.com/products/control/power-inverter-controller/
https://imperix.com/wp-content/uploads/document/B-Board_Datasheet.pdf
https://imperix.com/doc/help/b-board-pro-carrier-board

Driving PWM outputs

On the firmware IP, the sb_pwm[31:0] port provides access to the same PWM output

chain as that used by other modulators (CB-PWM, PP-PWM, DO-PWM and SS-PWM).

This allows the user to generate complementary signals with dead-time, use the

standard activate and deactivate functions and rely on the protection mechanism

that blocks PWM outputs when a fault is detected. A use example is available on the

page Custom PWM modulator implementation in FPGA.

The PWM chain can be configured using the Sandbox-PWM (SB-PWM) block. An

example is shown below.

Configuration of the SB-PWM block in Simulink

https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/software/sandbox-pwm
https://imperix.com/doc/wp-content/uploads/2021/06/deadtime_simulink.png
https://imperix.com/doc/wp-content/uploads/2021/06/deadtime_simulink.png

Mapping between sb_pwm and pwm ports of the imperix IP in Vivado

Each bit of the sb_pwm[31:0] IP port corresponds to a PWM lane.

sb_pwm[0] : lane #0

sb_pwm[1] : lane #1

sb_pwm[2] : lane #2

etc.

In a channel configuration (pseudo-complementary signals with dead time), the user

only needs to generate the HIGH signal, which must be connected to the appropriate

sb_pwm input (sb_pwm[0], sb_pwm[2], sb_pwm[4], etc.). An example of such a

configuration is available in TN120.

Imperix strongly discourages the user to directly driving the top-level pwm port, as this

would bypass the enable/disable mechanism! Instead, the SB-PWM port is meant to

provide proper access to PWM outputs, which should be used in all cases.

On B-Box RCP, this is only relatively sensitive as hardware protections exist.

https://imperix.com/doc/wp-content/uploads/2021/06/TN147_deadtime.png
https://imperix.com/doc/wp-content/uploads/2021/06/TN147_deadtime.png
https://imperix.com/doc/implementation/hysteresis-current-control

However, on B-Board PRO, this is critical since this mechanism also handles the fault

management !

More information regarding the hardware-level implementation is available in:

– The datasheets of B-Box RCP or B-Box Micro for laboratory devices.

– The datasheet of the B-Board PRO or PN201 for embedded systems.

IP configuration

Since version 3.10, the imperix IP is configurable:

The SFP port can be repurposed by the user, to implement custom

communication between devices using the Aurora protocol. An example of SFP

port repurposing is available on the page Example of FPGA-based Aurora

8B/10B communication.

Unused PWM modulators (CB-PWM, SS-PWM or PP-PWM) can be removed, to

save up FPGA resources.

Settings to disable RealSync on specific ports

https://imperix.com/wp-content/uploads/document/B-Box_Datasheet.pdf
https://imperix.com/products/control/power-inverter-controller/
https://imperix.com/wp-content/uploads/document/B-Board_Datasheet.pdf
https://imperix.com/doc/help/b-board-pro-carrier-board
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication
https://imperix.com/doc/wp-content/uploads/2024/10/IXIP_GT_config.png
https://imperix.com/doc/wp-content/uploads/2024/10/IXIP_GT_config.png

Settings to remove unused PWM modulators to save resources in the

FPGA sandbox

Download

The source files are now available on the imperix IP download page.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2024/09/IXIP_PWM_config-1.png
https://imperix.com/doc/wp-content/uploads/2024/09/IXIP_PWM_config-1.png
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

