Example of FPGA-based Aurora communication

PN118 | Posted on November 11,2024 | Updated on May 7, 2025

D

¥

=

~

i i

Victor HERRMANN
Development Engineer

imperix . in

Table of Contents

e What is Aurora ?
Aurora 8B/10B loopback example
o Vivado project
o MATLAB model
o Experimental results
e Step-by-step procedure to create the Aurora 8B/10B loopback example
e Aurora 64B/66B loopback example
e Going further

The SFP ports on imperix controllers are typically used for interconnecting devices in
a RealSync network. However, when customizing the FPGA firmware, imperix
designed the system to allow these SFP ports to be repurposed for other
communication protocols. Aurora 8B/10B or Aurora 64B/66B can be used to
communicate with hardware-in-the-loop (HIL) simulators that support the Aurora
protocol, such as OPAL-RT, TYPHOON HIL, SPEEDGOAT and RTDS.

This note provides an example of loopback communication using the Aurora 8B/10B
protocol over a fiber optic link. It provides a step-by-step guide demonstrating how
the Aurora 8B/10B protocol can be seamlessly integrated into the imperix controller
FPGA. An example of Aurora 64B/66B is also provided.

An example of SFP communication with a hardware-in-the-loop (HIL) simulator is
available on the page SFP communication with an RTDS MMC simulator.

Required hardware to follow this example:

e 1x imperix controller with SFP ports
(B-Box RCP, B-Board PRO or TPI8032)

https://www.linkedin.com/in/victor-herrmann/
https://imperix.com/technology/low-latency-communication/
https://opal-rt.atlassian.net/wiki/spaces/PRUH/pages/144527838/FPGA_IO_Aurora_8b10b_5G_250M
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/sfp_link.html
https://www.speedgoat.com/products/simulink-programmable-fpgas-fpga-code-module-aurora
https://knowledge.rtds.com/hc/en-us/articles/4415386203927-Aurora-Protocol
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/power/programmable-inverter/

e 1x10G SFP cable

Required software:

¢ Xilinx Vivado 2022.1 or later.
Installation guide available here.

¢ FPGA sandbox template 3.10 or later.
Available on the FPGA download page.

e C++ or ACG SDK version 2024.3 or |ater.
Available on the SDK download page.

Hardware used in this Aurora 8B/10B example: a B-Board with a loopback
connection between SFP 0 and SFP 1
FPGA-based Aurora communication is available for SDK version 2024.3 or later.
Latest SDK version is available on the download page.
To find all FPGA-related notes, please visit FPGA development homepage.

https://imperix.com/products/control/accessories/
https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/downloads/
https://imperix.com/doc/wp-content/uploads/2024/10/IMG_20241030_163117750-768x1024.jpg
https://imperix.com/doc/wp-content/uploads/2024/10/IMG_20241030_163117750-768x1024.jpg
https://imperix.com/downloads/
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

What is Aurora ?

Aurora is a serial link layer communication protocol developed by Xilinx/AMD. The
protocol is open and provides lightweight, high-speed point-to-point communication
between devices. Implementing Aurora communication is particularly useful for
establishing high-throughput, low-latency communication with other power
controllers or HIL simulators. The protocol is available in two versions: Aurora
8B/10B and Aurora 64/66B. Aurora 8B/10B provides lower latency while Aurora
64B/66B provides higher bandwidth.

Aurora 8B/10B loopback example

For demonstration purposes, a loopback connection is established between two
ports on the same controller, as shown in the diagram below:

CPU FPGA
250 MHz | 78,125 MHz
SBO >
—*00-01|—, » FIFO > -
! Aurora .
SFPport0 |1k
% | 8b/10b f¢RX PO N
+—00-01 [l FIFO [¢ \
* : Loopback
| SFP cable '|
SBO >
—* 0203 -~ * FIFO > X
! Aurora >
FPport1 || -
R Pl
+—02-03 ; FIFO
|

Diagram of the architecture of the system implemented in the loopback
example

e SBI and SBO blocks are used to move data between the CPU and the FPGA.

e FIFOs are used to move data between the IXIP clock domain (250 MHz) and
the Aurora communication clock domain (78.125 MHz in this example).

e Aurora 8B10B IPs encode/decode data.

e TX/RX serial links are connected to physical SFP ports to transmit data over
the optical fiber.

Vivado project

https://imperix.com/doc/wp-content/uploads/2024/11/Aurora-8B10B-loopback.png
https://imperix.com/doc/wp-content/uploads/2024/11/Aurora-8B10B-loopback.png
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://docs.amd.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide

The Vivado block design of the Aurora 8B/10B loopback example is provided below.

i

1k

-

Click here to open as PDF
The following zip file contains scripts to automatically generate this design.

create_aurora_8b10b_exampleDownload Aurora_8b10b_example_gen_scripts.zip

To generate the design using the script, please do the following:

¢ Download the FPGA sandbox template 3.10 or later, available on the FPGA
download page

e Unzip it and save the content somewhere on the PC

e Rename the folder to something more explicit

Mame Date modified Type Size
|~ [Aurora_8b10b_exampld | 06/11/2024 09:08 File folder |
o FPGA_Sandbox_template_3.10zip 05/11/2024 16:31 Compressed (zipp... 9753 KB

e Download Aurora_8b10b_example_gen_scripts.zip using the button above
e Unzip it and copy the content to the scripts folder of the FPGA sandbox
template

https://imperix.com/doc/wp-content/uploads/2024/11/image-3-1024x387.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-3-1024x387.png
https://imperix.com/doc/wp-content/uploads/2024/11/Example-of-FPGA-based-Aurora-8B10B-communication.pdf
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/wp-content/uploads/2024/11/ss_aurora_8b10_example-2.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_aurora_8b10_example-2.png

(JJ » Downloads > 5SFPexample

.

M @& ® W Tl Sort

Mame

@) .gitignore

(%] create_project.bat

D create_project.tel

D create_aurora_8b10b_example.tcl
3] create_aurora_8b10b_example.bat

> Aurora_8b10b_example > scripts *

= View

Date modified

29/10/2024 14:47
29/10/2024 14:47

Type Size

Git Ignore Source ... 1 KB
Windows Batch File 1 KB
TCL File 4 KE
TCL File 10 KB
Windows Batch File 1KE

e Set the vivado_path variable to match the Vivado version installed on the PC

|E] create_aurora_8b10b_example.bat E3

fecho off

L Ba}

set my path=

Y LN e

set my name=

e Double-click on create_aurora_8b10b_example.bat

set vivado path=C:\Xilinx\Vivado\2022.1\bin

Windows Defender SmartScreen may display a warning pop-up. Simply
click More info, then Run anyway.

" C\Windows\system32\cmd.e: X

Please enter a project name.

S w

Project names must start with a letter (A-Z, a-z) and must contain
only alphanumeric characters (A-Z, a-z, 8-9) and underscores (_)

Project name: Aurora_8bl0b_loopback

The Vivado Aurora 8B/10B project will be created and configured. The step-by-step

section below explains how to recreate it manually.

MATLAB model

The model below is used to test the design. It generates a sinusoidal waveform and
sends it to the FPGA using SBI 0 and 1. It reads the received on SBO 2 and 3. Probe
variables are used to observe the sent and received signals on Cockpit.

https://imperix.com/doc/wp-content/uploads/2024/11/image-5.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-5.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_create_aurora_8b10b_example.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_create_aurora_8b10b_example.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-6.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-6.png
https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/probe-variable

SFPO (UP)
- fgdata_send_sfp_0 il B8O BBO ke
single2shoy? | *|sbizsngle

SFP1 (DOWN 0)

i mg B80 BBO 1 e
. 4 reg_02-03 reg_02-03 4 | Joata_received_stp_1
single2sbor] SBO SBI ulsbiZsingle

Download SFP_communication_loopback.slx

Experimental results

Observing the signals on Cockpit validates that the data sent on port SFP 0 using
Aurora 8B/10B is properly received on port SFP 1.

[

— data_send sfp_0 [-] 121X

— (T) data_received_sfp_1 [-] [~]X

20 ms A0 ms 60 ms

Thanks to the Aurora 8B/10B low latency, there is a delay of 2 control task periods
between sending and receiving data.

== (T) data_send_sfp_0 [-
— data_received_sfp_1 [-]

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_matlab-1024x287.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_matlab-1024x287.png
https://imperix.com/doc/wp-content/uploads/2024/11/SFP_communication_loopback.slx
https://imperix.com/doc/wp-content/uploads/2024/11/SFP_communication_loopback.slx
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit_2.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit_2.png

Using the Integrated Logic Analyzer (ILA) in Vivado, the propagation delays of the
data in the FPGA can be measured. With a lane rate of 3.125 Gbps, the total
measured delay is 560 ns. It consists in:

e 84 ns for the TX FIFO data
e 424 ns for the Aurora communication
e 52 ns forthe RX FIFO

Propagation delay of the data in the FPGA. The acquisition was done with
a clock of 250 MHz.

Step-by-step procedure to create the Aurora
8B/10B loopback example

Instantiating the Aurora 8B/10B IP

The first step is to instantiate 2 Aurora IPs. The Aurora 8B/10B IP is available for free
from the Vivado IP Catalog.

aurora_8b10b_0

aurora_8b10b_1

=+ USER_DATA_S_AXI_TX

=4+ USER_DATA_S_AXI_TX

||+ core_controL
||+ eT_serAL_Rx

| + QPLL_CONTROL_IN
reset

gt_reset

drpclk_in
gt_gpliclk_gquadi1_in
gt_gplirefclk_gquadi_in
init_clk_in

user_clk

sync_clk

gt_refclkl

USER_DATA_M_AXI_RX +

CORE_STATUS +
GT_SERIAL_TX +
link_reset_out
gt0_gplireset_out
tx_out_clk
sys_reset_out

Aurora 8B10B

Configuring the Aurora 8B/10B IP

The screenshots below show the settings used in this example. The two following

I'T T T ==

||+ core_controL
||+ oT_sEriaL_Rx

| + QPLL_CONTROL_IN
reset

gt_reset

drpclk_in
gt_gpliclk_guadi_in
gt_gplirefclk_quadi_in
init_clk_in

user_dk

sync_clk

gt_refclkl

USER_DATA_M_AXI RX +
CORE_STATUS +
GT_SERIAL_TX +

link_reset_out
gt0_gplireset_out
tx_out_clk

sys_reset_out

Aurora 8B10B

parameters must be set to specific values to work on imperix hardware:

' T T T ==

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_ila-1-1024x309.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_ila-1-1024x309.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-1.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-1.png

o GT Reflck must be set to 250 MHz, because the clock is generated outside of
the FPGA

¢ “include Shared Logic in example design” must be checked, because the
Shared Logic is already instantiated inside imperix firmware

Core QOptions GT Selections Shared Logic

Physical Layer

Lane Width (Bytes) 4 A
Line Rate (Gbps) 3125 05
GT Refclk (MHz) 250.000 w

0-200.0]

INIT clic (MHz) 100.0

T

DRP Clk in MHz) 100.0 [60.0 - 175.01)
Link Layer

Dataflow Mode Cuplex w

Interface Streaming o

Flow Caontrol Mone

Back Channel Sidebands

[] SeramblenDescrambler [] Little Endian Support

Debug and Control

I:I Additional transceiver control and status ports

[] GT DRP Interface

https://imperix.com/doc/wp-content/uploads/2024/10/aurora_core_options.png
https://imperix.com/doc/wp-content/uploads/2024/10/aurora_core_options.png

Core Options GT Selections Shared Logic

Shared Logic

Select whether the transceiver quad PLL, transceiver differential refclk buffer, clocking and
resetlogic are included in the core itself orin the example design

() include Shared Logic in core

(®) include Shared Logic in example design

Shared Logic Overview
Include Shared Logicin example design
- Forusers who want the Shared Logic outside the core.

- Forusers who want to editthe Shared Logic or use their own.
- Forusers who want one core with Shared Logic to drive multiple cores without Shared Logic.

Shared
Logic
: OR
e
: |
. Example Design
Y
Core without - Shared
Shared Logic Logic

The other Core Options settings can be modified freely. Below are the settings used
in this example:

¢ A lane width of 4 Bytes was chosen to be easily interfaced to the AXI-Stream
interface.

e The default line rate of 3.125 Gbps was kept. This will result in a data clock of
line_rate * 0.8 / lane_width_in_bits = (3.125 Gbps * 0.8) / (32 bits) = 78.125
MHz

¢ In this example, making packets is unnecessary, so the interface is set
to streaming mode.

Other Core Options settings are not detailed in this note and are left as defaults.

Configuring the imperix IP

The second step is to configure the imperix firmware IP to make the SFP ports
available from the sandbox. In this example, SFP 0 and 1 are used.

https://imperix.com/doc/wp-content/uploads/2024/10/aurora_shared_logic_option.png
https://imperix.com/doc/wp-content/uploads/2024/10/aurora_shared_logic_option.png

IMPERIX_FW (3.10) ¢

o Documentation IP Location

() show disabled ports Compaonent Name |IXIP

FEXED_K +

!:::: Using SFP from sandbox Saving FPGA resources

usA +

cLck D+

GLOGK_1 + SFP ports

CGLOGK Z +

cLck 3+

ADC +

=a0_8uE t+ |||

T e ¥ Disable RealSync on SFP 1 (DOWN 0) and make it available from the sandbox

[l] dk_250 mhx = |

e o () Disable RealSync on SFP 2 (DOWN 1) and make it available from the sandbox

o gro{iSd) m
Gt ELIRIIES | Click on the documentation button to learn more on how to use the SFP ports.

b cuersampling_puse = |

bp_1 samplirg_pu=e = |

= _dore_pulse = |

ac_dore_cpu_puse =

dat id_puse =

[+] Disable RealSync on SFP 0 (UP) and make it available from the sandbox |

malirg -
P s mE10] [
- |
on = |
N
mnt
a1

| oK | | Cancel

SFP settings of the imperix IP
This makes the following ports visible on the imperix IP.

e TX and RX signals are the differential serial signals connected between the
transceiver and the physical SFP ports.
e The GT interface gives access to the shared logic instantiated in the imperix IP.

https://imperix.com/doc/wp-content/uploads/2024/10/sfp_config_loopback.png
https://imperix.com/doc/wp-content/uploads/2024/10/sfp_config_loopback.png

oODIV_DUS T

I
cT —|||

= private_in[30:0]
= flt[15:0]
= gpi[15:0]
= user fw _id[15:0] - B

clk 50 mhz =
= sb_pwm[31:0] clk 250 mhz =—
private_out[35:0] =

pwm[31:0]
gpo[15:0] =
sync_pulse =
oversampling_pulse =
sampling_pulse =
adc_done pulse -
adc_done _cpu_pulse =
data_valid pulse =
reading =

cpu_core state[1:0] pm
fault =

IMPERIX_FW

Connecting the clocks of the Aurora 8B/10B IP

The Aurora IP provides a tx_out_clk (78.125 MHz in this example), which is used as
the user_clock. A BUFG buffer is required between tx_out_clk and the clock inputs.
The init clocks and DRP clocks are connected to clk_50_mhz provided by the imperix
firmware IP.

To learn more about the different clocks, please refer to the Aurora 8B10B IP and the
GTX transceiver user guides.

https://imperix.com/doc/wp-content/uploads/2024/11/image-2.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-2.png
https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/BUFG
https://docs.amd.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/v/u/en-US/ug476_7Series_Transceivers

IXIP_0

IMPERIX_FW

aurora_8b10b_0

USER_DATA_M_AXI RX 4
CORE_STATUS
GT_SERIAL TX 4|

fink_reset_out
gi0_gpliresat out
sys_reset_out
tx_out_clk

Aurora BB10B

aurora_8b10b_1

FIXED 10 4
S + USER_DATA_S_AXI_TX
R 4 4+ CORE CONTROL
= o + GT_SERIAL RX
EITRRD 4 + QPLL_CONTROL_IN
CLOOK_1 4 |
CLOCK 2 + =] gtreset
CLOCK 2 4 _."':";"n
ADC L
SBID_BUS 4 =| grefakl _
po = gt_gplick_quadi_in
eI = gt_gpirekik_quadi_in
o GT_gi0_gpirefcidost b = ayme_ck
: m;l:l_dwﬂl GT_gt_qplick_quadi b = ol
GT. fok_quadi b =
- opl150] [*"U";‘: ql*:;‘ : C
| user_fu_id15:0] e e L
- s pwmf310] ol
7 ::‘g privats_ou35:0] m
= tin 1 prom[31:0] -
. apal15:0] jm + USER_DATA_S_AXI_TX
- sync_puise = 4+ CORE_CONTROL
oversampling_pulse = + GT_SERIAL_RX
sampling_pulse = + GQPLL_CONTROL_IN
adc_done_puise (= user_ck
adc_done_cpu_pulse = ayme_ck
data_valid_pulse = - reset
reading = = gt_reset
cpu_core_staie[1:0] = gt_gpirekik_quadi_in
fait = | gi_refdkl
B0 = | gt_gplick_quadi_in
R0 - nit_ck_in
Bl = in

USER_DATA_M_AXI_RX +
CORE_STATUS 4
GT_SERIAL TX 4|

link_reset_out
g¥0_gplireset_out
tx_out_chk
sys_reset_out

Aurora BB10B

Aurora IP clock connections

Connecting the data interfaces of the Aurora 8B/10B IP

The AXI-Stream interface module (ix_axis_interface) is used to exchange data with
the Aurora IPs. As the AXI-Stream interface module and the Aurora IPs are not in the
same clock domain, AXI4-Stream Data FIFO with independent clocks are used to
manage the clock domain crossing. The figure below shows how the FIFOs are

connected in the system.

To learn more about the AXI-Stream interface module, please refer to the getting

started page.

«d

| amol }—

dconstant_0

Constant

util_ds_buf_0
BUFGIPD0] BUFG_O[00]

Utility Buffer

ix_axis_interface

+ ADC
+ 5_AXIS_FPGA2CPU_00
+ 5BI0_BUS

+ S_ANIS_FPGAZCPU_01
4 8_ANIS_FPGACPU_02
+ 5_AXIS_FPGACPU_03
+ §_ANS_FPGACPU_04
+ 5_ANIS_FPGAICPU_05
+ S_ANIS_FPGAZCPU_06
4 8_ANS_FPGACPU_O07
+ S_ANIS_FPGACPU_08
4 §_AXIS_FPGAZCPU_09
+ 5_AXIS_FPGACPU_10
+ 5_AXIS_FPGACPU_11
4 §_AXIS_FPGAICPU_12
4 S_AXIS_FPGAZCPU_13
4 S_AXIS_FPGAZCPU_14
+ 5_AXIS_FPGACPU_1S
ok

= syne_puise_in

= ade_done_pulse_in

M_AXIS_CPUZFPGA_01 4

M_AXIS_ADC 00 +
M_AXIS_ADC_01 +
M_AXIS_ADC 02 +
M_AXIS_ADC 03 -+
M_AXIS_ADC 04 -+
M_AXIS ADC 05 +
M_AXIS_ADC_06 +
M_AXIS_ADC_07 4
M_AXIS_ADC 08 +
M_AXIS_ADG 08 4
M_AXIS ADC_10 +
M_AXIS_ADC_11 4
M_AXIS_ADC 12 +
M_AXIS ADC 13 +

aurora_Bb10b_1

4+ 5.AX -
| | —— . USER_DATA_S_AXI_TX
||+ core_contRoL
||+ or_seraL rRx
4 < |+ ePLL_conTroL_in

p—— user_cik
e 570 K
- reset
— gl reset

= gt refciki

= irit_alk_in
 dpoliin

M_AXIS_ADC_14 +
M_AXIS ADC 15 +
RTL M_AXIS_CPUZFPGA 00 +

= t_qplireick_quad1_in

USER_DATA_M_AXI_RX

CORE_STATUS +
GT_SERIAL_TX +|
link_reset_out
gi0_apikesel_oul
_out_ck
sys_resel_oul

= gt_gpick_quad?_in

I L

Aurora BB108

M_AXIS_CPUZFPGA 02 +
M_AXIS_CPUZFPGA 03 +
M_AXIS_CPUIFPGA 04 +
M_AXIS_CPUZFPGA 05 -+
M_AXIS_CPUZFPGA_06
M_AXIS_CPUZFPGA 0T +
M_AXIS_CPUZFPGA 08 +
M_AXIS_CPUIFPGA 00 4
M_AXIS CPUZFPGA 10 +
M_AXIS CPU2FPGA_TT 4
M_AXIS_CPUZFPGA_1Z +
M_AXIS CPU2FPGA_13 +
M_AXIS_CPUZFFGA_14 +
M_AXIS CPUIFPGA 15 +

M_AXIS Ts 4

nResel sl =
nResel_sync =

x_ais,

interface_v1_0

aurora_Bb10b_0

= resal
= g reset

| dpelkin
= irit_alk_in
= @_refelkt

$—— sy ck
L mar o

= ot qpiick_quad1_in
= @t_qpirefck_quad1_in

Tl USER_DATA_S_AXITX
||+ core_conTroL
|l+ or_sera_rx

|ll+ aPLL_contRoL_ N

USER_DATA_M_AXI_RX

CORE_STATUS +|
GT_SERIAL TX +|
link_resel_oul
t0_apikeset_out
sys_resel_oul
_out ek

Aurora BB10B

r 1
+
+
15 el

util_ds_buf 0
—+ BUFGI[Z0] BUFG_OW00)
: Utiity Buffer .

Connecting the shared logic interface of the Aurora 8B/10B IP

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_clock_interface.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_clock_interface.png
https://docs.amd.com/r/en-US/pg085-axi4stream-infrastructure/AXI4-Stream-Data-FIFO
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_data_interface-2-1024x645.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_data_interface-2-1024x645.png

The following signals, connected to the shared logic of Aurora, must be connected
between the GT interface of the imperix firmware IP and each Aurora IP:

e gtO_gplllock
o gt0_gplirefclklost
e gt_gpllclk_quad1
e gt_gpllrefclk_quad1
e gt_refclkl
IXIP_O /
= ix_axis_interface_v1_0
FIXED_IO + aurora_8b10b_1
Bzg: i =+ USER_DATA_S_AXI_TX
USR + |[j—d <+ CORE_CONTROL
+ GT_SERIAL_RX
E::gz:'? I Jll— apLL_conTrROL_IN
- » gt0_gplllock_in USER_DATA_M_AXI_RX + [F—
E::gg:*z I I » gto_gplirefclkiost_in CORE_STATUS + |||
o o : user_clk GT_SERIAL_TX +Il
sB10_BUS + ||| sync_clk link_reset_out =
- oT — ii = reset gt0_qgplireset_out ~
GT_gt0_gpllock »] et |
LU at_ _quad1_in sys_reset_oul =
GT_gt0_qgplirefclklost b refclkd
GT_gt_qgpliclk_quad1 » eu dck quadi i
GT_gt_gplirefclk_guad1 » ?"_q::‘_qu _in
u GT_gt_refcikl » ::'le .
clk_50_mhz Al
clk_250_mhz ; Aurora 8B10B
private_out[35:0] el 8b10b 0
I aurora_| X
el — =+ USER_DATA_S_AXI_TX

sync_pulse

+ CORE_CONTROL
+ GT_SERIAL_RX
— QPLL_CONTROL_IN

oversampling_pulse =
sampling_pulse =
adc_done_pulse

ada. done o e » gt0_gplilock_in USER_DATA_M_AXI_RX S
T p_u_pu P gt0_gp _in CORE_STATUS +
data_valid_pulse
= reset GT_SERIAL_TX +
reading
= gt _reset link_reset_out =
cpu_core_state(1:0] m= .
fault drpelk_in gt0_gplireset_out =
0 e init_clk_in sys_reset_oul =
- gt_refclk1 tx_out_clk p=—o
np_0 =
- ot_gpliclk_quad1_in
=Ll t d1_in
e = gt_s quadi_|
sync_clk
user_clk

IMPERIX_FW
.
Aurora 8B10B

Connecting the TX/RX signals of the Aurora 8B/10B IP

Finally, the rxn, rxp, txn, and txp signals of each Aurora IP must be connected to the
corresponding pins of the imperix firmware IP to map each Aurora IP to a physical
SFP port on the board.

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_shared_logic-1024x852.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_shared_logic-1024x852.png

adc_done_cpu_pulse
data_valid_pulse
reading
cpu_core_state[1:0]
fault

rxn_0

rp_0

rxn_1

rxp_1

aurora_8b10b_0

=+ USER_DATA_S_AXI_TX
lll+ core_conTrOL

lll— 6T_SERIAL_Rx
P rxn[0:0]
> rxp[0:0] USER_DAT!
lll— aPLL_conTROL_IN co
» gt0_gplilock_in GT

P gt0_qgplirefclklost_in
reset

= gt_reset

drpclk_in g

init_clk_in

gt_refclk1

gt_qgpliclk_quad1_in

gt_gplirefclk_quad1_in

sync_clk

user_clk

Aurora 8B10B

aurora_8b10b_1

-':(+ USER_DATA_S_AXI_TX

i_|‘+ CORE_CONTROL
Il

— GT_SERIAL_RX

P rxn[0:0]

> rxp[0:0] USER_DAT!
lll— aPLL_coNnTROL_IN co

Y S T DS P ~T

Finally, the bitstream can be generated and loaded in an imperix controller, as
explained on the getting_started page.

Aurora 64B/66B loopback example

In a similar manner to the Aurora 8B/10B example, it is possible to configure an
Aurora 64B/66B communication on SFP ports. This section details the steps to
adapt the Aurora 8B/10B example described in the previous section to use an Aurora

64B/66B communication.

The Vivado block design of the Aurora 64B/66B loopback example is shown below.

LITIIIT

sl

|
il

T

=

|

ji

Click here to open as PDF

The following zip file contains scripts to automatically generate this design.

https://imperix.com/doc/wp-content/uploads/2024/10/image.png
https://imperix.com/doc/wp-content/uploads/2024/10/image.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/wp-content/uploads/2025/01/image-1024x348.png
https://imperix.com/doc/wp-content/uploads/2025/01/image-1024x348.png
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b_66b.pdf

aurora_64b66b_exampleDownload aurora_64b66b_example.zip

To use the script , please follow the same instructions as for the 8B/10B example.
Since this example has the same behavior as the 8B/10B example, it is possible to
reuse the MATLAB model above to test the design.

Instantiating the Aurora 64B/66B IPs

The two Aurora 8B/10B IPs are replaced by Aurora 64B/66B IPs.

aurora_64b66b_0 aurora_64b66b_1

+ USER_DATA_S_AXIS_TX S+ USER DATA S AXIS TX
+ CORE_CONTROL |I|4+ core_controL

— GT_SERIAL_RX H— GT_SERIAL_RX

» nnf00] USER_DATA_M_AXIS RX + = L= » nnjo0] USER_DATA_M_AXIS_RX + [
» np{00) CORE_STATUS +m » np[00) CORE_STATUS +
refck_in GT_SERIAL TX —H| refokd_in GT_SERIAL TX —
user_clk nf00] P — - user_clk xn[0:0] »
sync_dk txp[00] B p— = sync_dk txp(0:0] »

reset_pb be_out_clk e = resel_pb e_out_dk
pma_init link_reset_out = = pma_init link_reset_out
drp_dk_in sys_resel_out = drp_dk_in sys_reset_out
init_dlk init_dk

gt_qgpliclk_guad1_in gt_qpliclk_quad1_in

gt_gplirefclk_guad_in L gt gpliefdk_guadi_in

Aurora 64B66B Aurora 64B66B

The connections of the following signals are the same as for the Aurora 8B/10B IP:

¢ The init and DRP clocks are connected to clk_50_mhz, which is provided by the
imperix firmware IP.

e The shared logic signals (refclk1_in, gt_qgpliclk_quad1,gt_qgplirefclk_quad1) are
connected to the GT interface of the imperix firmware IP.

e The rxn, rxp, txn and txp signals are connected to the imperix firmware IP.

The configuration of the Aurora 64B/66B IP follows the same rules as the Aurora
8B/10B IP:

e GT Reflck must be set to 250 MHz as the clock is generated outside the FPGA.

¢ “Include Shared Logic in example design” must be checked, because the
shared logic is already instantiated inside the imperix firmware.

e The other settings can be changed freely.

Connecting the Aurora 64B/66B IP clocks

A Clocking Wizard is instantiated for each Aurora 64B/66B IP to generate the user
clock and the sync clock from the tx_out clock. The Clocking Wizard is configured as
follows:

https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#matlab
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_aurora-1024x412.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_aurora-1024x412.png

Clocking Options Output Clocks MMCM Settings Summary

Clock Monitor

("] Enable Clock Monitoring

Primitive

® mmcw) PLL

Clocking Features Jitter Optimization
[+ Frequency Synthesis [Minimize Power @ Balanced
[+/] Phase Alignment (") Spread Specirum () Minimize Qutput Jitter
) Dynamic Reconfig ("] Dynamic Phase Shift () Maximize Input Jitter fitering

() safe Clock Startup

Dynamic Reconfig Interface Options

Input Clock Information

Input Clock Port Mame Input Frequency(MHz) Jitter Options Input Jitter Source
Primary clk_in1 156.250 10.000 - 1066.000 ul ~ 0,010 Global buffer =
() | Secondary cli_in2 100.000 0.010

The primitive is set to MMCM.

The input frequency is set to the tx_out_clk frequency of the Aurora 64B/66B IP.
This frequency can be calculated from the line rate: tx_out_clk_freq = line_rate /
32. With a line rate of 5 Gbps we get a tx_out_clk of 156.25 MHz.

The source is set to Global buffer.

ocking Options. Output Clocks MMCM Settings

The phase is calculated relative 1o the active input clock.

Ouiost Clock || Port Mama g:x:«:? — Actual z:ﬁ:f;? = Actual gzru:::m Actual Orives ::: PS :la ;;ir:
@ akoutt | clk_outt 78.125 76.12500 0.000 0.000 50.000 500 BUFG - 741290
Dakour |dkout 156,250 156.25000 0.000 0.000 50.000 500 BUFG - 741290
akous ok oudd 100.000 0.000 50.000
dlk_outd 100.000 0,000 50,000
dk_outs 100.000 0.000 50.000
clk_outs 100.000 0,000 50.000
clk_out? 100.000 0,000 50.000

Clocking Feedback

Source Signaling
OutputClock Sequence Number

) Automatic Control On-Chip
Automatic Control Off-Chip
User-Controlled On-Chip

User-Confrolled Off-Chip

= == == ==

Enable Optional Inputs | Outputs for MMCM/PLL
reset power_down Input_clk_stopped

locked difbstopped

The frequency of output 1 is set to half the frequency of tx_out_clk, in this
example 78.125 MHz.

The frequency of output 2 is set to the same frequency as tx_out_clk, in this
example 156.25 MHz.

The drive buffer for both outputs is set to BUFG .

https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_1.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_1.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_2-1024x699.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_2-1024x699.png

The Clocking Wizards are connected to the Aurora 64B/66B IP as follows:

aurora_64b66b_1
= 4 USER_DATA_S_AXIS_TX
||l 4 core_conTrOL
|| = &T_sEriaL_Rrx
» rnfo0] USER_DATA_M_AXIS_RX + =
» op00) CORE_STATUS +|||
refclk_in GT_seriALTX —|||
— user_clk %n[0:0] B dlk wiz_1
- sync_clk txp[0:0] ok outl = a
— reset_pb tx_out_clk clk_in1 cikiaulz [
= pma_init link_reset_out = -
drp_dk_in AT | Clocking Wizard
init_clk
gt_gpliclk_quadi_in
gt_ . quad1_in

Aurora 64B668B

e The input of the Clocking Wizard is connected to tx_out_clk on the Aurora
64B/66B IP.

e Output 1 of the Clocking Wizard is connected to user_clk on the Aurora
64B/66B IP.

e Output 2 of the Clocking Wizard is connected to sync_clk on the Aurora
64B/66B IP.

Connecting the Aurora 64B/66B IP reset signals

Unlike the Aurora 8B/10B IP, the Aurora 64B/66B must be properly reset during
initialisation to function properly. In this example, the reset is handled by the
Processor System Reset IP provided by Xilinx/AMD. The IP is used with default
settings and connected as follows:

aurora_64b8Bb_0

Z|+ USER DATA S_AXIS_TX
|I|+ core_controL
|||= eT_seRriaL_Rrx

» wxnf0:0] USER_DATA M AXIS RX +[%
» pfo:0] CORE_STATUS +|||
refckl_in GT_SERIAL_TX — |||
—— user_ck tunf0:0] >
—— sync_ck tpf0: 0] >
reset_pb tx_out_dk
pma_init link_reset_out f=
= dip_dk_in sys_resel_out e
init_dk

gt_gplick_quad1_in
gt_qpielck_quad1_in

Aurora 64B66B

proc_sys_reset_0
aurora_64b66b_1
it 0 slowest_sync_dk mb_reset =
p—) e3t_reset_in bus_struct_reset[0:0] E|+ USER_DATA_S_AXIS_TX
‘ dout]0:0] — BUX_feset_in peripheral_reset[0:0] |l|+ core_conTroL
= mb_debug_sys_rst interconnect_aresetn[0:0] @ |l|= &T_seriaL_rx

Constant e dem_ loched peripheral_ o> » nf0:0] USER_DATA_M_AXIS_RX +[Z

» mplo:0] CORE_STATUS +|||

Processor System Reset rafclkd_in GT_SERIAL_TX —|||

== user_ck txnf0:0]

L sync ck pf0:0] p f]
reset_pb tx_out_dk fp——
pma_init link_reset_out pe
dip_dk_in sys_reset_out =

L — init_dk
gt_apliclk_quad1_in
gt_aplielck_quad1_in

Aurora 64B66B

e The slowest_syn_clk input of the Processor System Reset IP is connected to
the init_clk of the Aurora 64B/66B IP.

https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_3-1024x428.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_3-1024x428.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_rst-1024x655.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_rst-1024x655.png

e The ext_reset_in, aux_reset_in and decm_locked inputs are connected to a
constant set to 1.

e The pma_init signal of the Aurora 64B/66B IP is connected to the
bus_struct_reset.

e The reset_pb signal of the Aurora 64B/66B IP is connected to the
peripheral_reset.

Connecting the data interfaces of the Aurora 64B/66B IP

Since the Aurora 64B/66B provides a 64-bit data interface, 64-bit FIFOs are used and
the data from the AXI stream interface is padded with 32 additional zeros to comply
with the FIFOs’ width. Additional zeros are then removed in the incoming stream
before being fed back to the AXI stream interface.

Finally, the bitstream can be generated and used in the same way as in the Aurora
8B/10B example.

Going further

The page high-level synthesis for FPGA developments shows how automated code

generation tools such as Model Composer and Vitis HLS can be used to facilitate the
development of FPGA modules. Like the Aurora 8B/10B IP, they use AXI4-Streams to
move data around.

The FPGA development on imperix controllers summarizes all the other FPGA-
related pages.

https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_1-1024x261.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_1-1024x261.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_2-1024x210.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_2-1024x210.png
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

