
Example of FPGA-based Aurora communication

PN118 | Posted on November 11, 2024 | Updated on May 7, 2025

Victor HERRMANN

Development Engineer

•

Table of Contents

What is Aurora ?

Aurora 8B/10B loopback example

Vivado project

MATLAB model

Experimental results

Step-by-step procedure to create the Aurora 8B/10B loopback example

Aurora 64B/66B loopback example

Going further

The SFP ports on imperix controllers are typically used for interconnecting devices in

a RealSync network. However, when customizing the FPGA firmware, imperix

designed the system to allow these SFP ports to be repurposed for other

communication protocols. Aurora 8B/10B or Aurora 64B/66B can be used to

communicate with hardware-in-the-loop (HIL) simulators that support the Aurora

protocol, such as OPAL-RT, TYPHOON HIL, SPEEDGOAT and RTDS.

This note provides an example of loopback communication using the Aurora 8B/10B

protocol over a fiber optic link. It provides a step-by-step guide demonstrating how

the Aurora 8B/10B protocol can be seamlessly integrated into the imperix controller

FPGA. An example of Aurora 64B/66B is also provided.

An example of SFP communication with a hardware-in-the-loop (HIL) simulator is

available on the page SFP communication with an RTDS MMC simulator.

Required hardware to follow this example:

1x imperix controller with SFP ports

(B-Box RCP, B-Board PRO or TPI8032)

https://www.linkedin.com/in/victor-herrmann/
https://imperix.com/technology/low-latency-communication/
https://opal-rt.atlassian.net/wiki/spaces/PRUH/pages/144527838/FPGA_IO_Aurora_8b10b_5G_250M
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/sfp_link.html
https://www.speedgoat.com/products/simulink-programmable-fpgas-fpga-code-module-aurora
https://knowledge.rtds.com/hc/en-us/articles/4415386203927-Aurora-Protocol
https://imperix.com/doc/help/sfp-communication-with-an-rtds-mmc-simulator
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/power/programmable-inverter/

1x 10G SFP cable

Required software:

Xilinx Vivado 2022.1 or later.

Installation guide available here.

FPGA sandbox template 3.10 or later.

Available on the FPGA download page.

C++ or ACG SDK version 2024.3 or later.

Available on the SDK download page.

Hardware used in this Aurora 8B/10B example: a B-Board with a loopback

connection between SFP 0 and SFP 1

FPGA-based Aurora communication is available for SDK version 2024.3 or later.

Latest SDK version is available on the download page.

To find all FPGA-related notes, please visit FPGA development homepage.

https://imperix.com/products/control/accessories/
https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/downloads/
https://imperix.com/doc/wp-content/uploads/2024/10/IMG_20241030_163117750-768x1024.jpg
https://imperix.com/doc/wp-content/uploads/2024/10/IMG_20241030_163117750-768x1024.jpg
https://imperix.com/downloads/
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

What is Aurora ?

Aurora is a serial link layer communication protocol developed by Xilinx/AMD. The

protocol is open and provides lightweight, high-speed point-to-point communication

between devices. Implementing Aurora communication is particularly useful for

establishing high-throughput, low-latency communication with other power

controllers or HIL simulators. The protocol is available in two versions: Aurora

8B/10B and Aurora 64/66B. Aurora 8B/10B provides lower latency while Aurora

64B/66B provides higher bandwidth.

Aurora 8B/10B loopback example

For demonstration purposes, a loopback connection is established between two

ports on the same controller, as shown in the diagram below:

Diagram of the architecture of the system implemented in the loopback

example

SBI and SBO blocks are used to move data between the CPU and the FPGA.

FIFOs are used to move data between the IXIP clock domain (250 MHz) and

the Aurora communication clock domain (78.125 MHz in this example).

Aurora 8B10B IPs encode/decode data.

TX/RX serial links are connected to physical SFP ports to transmit data over

the optical fiber.

Vivado project

https://imperix.com/doc/wp-content/uploads/2024/11/Aurora-8B10B-loopback.png
https://imperix.com/doc/wp-content/uploads/2024/11/Aurora-8B10B-loopback.png
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://docs.amd.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide

The Vivado block design of the Aurora 8B/10B loopback example is provided below.

Click here to open as PDF

The following zip file contains scripts to automatically generate this design.

create_aurora_8b10b_exampleDownload Aurora_8b10b_example_gen_scripts.zip

To generate the design using the script, please do the following:

Download the FPGA sandbox template 3.10 or later, available on the FPGA

download page

Unzip it and save the content somewhere on the PC

Rename the folder to something more explicit

Download Aurora_8b10b_example_gen_scripts.zip using the button above

Unzip it and copy the content to the scripts folder of the FPGA sandbox

template

https://imperix.com/doc/wp-content/uploads/2024/11/image-3-1024x387.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-3-1024x387.png
https://imperix.com/doc/wp-content/uploads/2024/11/Example-of-FPGA-based-Aurora-8B10B-communication.pdf
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/wp-content/uploads/2024/11/create_aurora_8b10b_example.zip
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/doc/wp-content/uploads/2024/11/ss_aurora_8b10_example-2.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_aurora_8b10_example-2.png

Set the vivado_path variable to match the Vivado version installed on the PC

Double-click on create_aurora_8b10b_example.bat

Windows Defender SmartScreen may display a warning pop-up. Simply

click More info, then Run anyway.

The Vivado Aurora 8B/10B project will be created and configured. The step-by-step

section below explains how to recreate it manually.

MATLAB model

The model below is used to test the design. It generates a sinusoidal waveform and

sends it to the FPGA using SBI 0 and 1. It reads the received on SBO 2 and 3. Probe

variables are used to observe the sent and received signals on Cockpit.

https://imperix.com/doc/wp-content/uploads/2024/11/image-5.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-5.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_create_aurora_8b10b_example.png
https://imperix.com/doc/wp-content/uploads/2024/11/ss_create_aurora_8b10b_example.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-6.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-6.png
https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/probe-variable

Download SFP_communication_loopback.slx

Experimental results

Observing the signals on Cockpit validates that the data sent on port SFP 0 using

Aurora 8B/10B is properly received on port SFP 1.

Thanks to the Aurora 8B/10B low latency, there is a delay of 2 control task periods

between sending and receiving data.

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_matlab-1024x287.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_matlab-1024x287.png
https://imperix.com/doc/wp-content/uploads/2024/11/SFP_communication_loopback.slx
https://imperix.com/doc/wp-content/uploads/2024/11/SFP_communication_loopback.slx
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit_2.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_cockpit_2.png

Using the Integrated Logic Analyzer (ILA) in Vivado, the propagation delays of the

data in the FPGA can be measured. With a lane rate of 3.125 Gbps, the total

measured delay is 560 ns. It consists in:

84 ns for the TX FIFO data

424 ns for the Aurora communication

52 ns for the RX FIFO

Propagation delay of the data in the FPGA. The acquisition was done with

a clock of 250 MHz.

Step-by-step procedure to create the Aurora

8B/10B loopback example

Instantiating the Aurora 8B/10B IP

The first step is to instantiate 2 Aurora IPs. The Aurora 8B/10B IP is available for free

from the Vivado IP Catalog.

Configuring the Aurora 8B/10B IP

The screenshots below show the settings used in this example. The two following

parameters must be set to specific values to work on imperix hardware:

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_ila-1-1024x309.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_ila-1-1024x309.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-1.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-1.png

GT Reflck must be set to 250 MHz, because the clock is generated outside of

the FPGA

“include Shared Logic in example design” must be checked, because the

Shared Logic is already instantiated inside imperix firmware

https://imperix.com/doc/wp-content/uploads/2024/10/aurora_core_options.png
https://imperix.com/doc/wp-content/uploads/2024/10/aurora_core_options.png

The other Core Options settings can be modified freely. Below are the settings used

in this example:

A lane width of 4 Bytes was chosen to be easily interfaced to the AXI-Stream

interface.

The default line rate of 3.125 Gbps was kept. This will result in a data clock of

line_rate * 0.8 / lane_width_in_bits = (3.125 Gbps * 0.8) / (32 bits) = 78.125

MHz

In this example, making packets is unnecessary, so the interface is set

to streaming mode.

Other Core Options settings are not detailed in this note and are left as defaults.

Configuring the imperix IP

The second step is to configure the imperix firmware IP to make the SFP ports

available from the sandbox. In this example, SFP 0 and 1 are used.

https://imperix.com/doc/wp-content/uploads/2024/10/aurora_shared_logic_option.png
https://imperix.com/doc/wp-content/uploads/2024/10/aurora_shared_logic_option.png

SFP settings of the imperix IP

This makes the following ports visible on the imperix IP.

TX and RX signals are the differential serial signals connected between the

transceiver and the physical SFP ports.

The GT interface gives access to the shared logic instantiated in the imperix IP.

https://imperix.com/doc/wp-content/uploads/2024/10/sfp_config_loopback.png
https://imperix.com/doc/wp-content/uploads/2024/10/sfp_config_loopback.png

Connecting the clocks of the Aurora 8B/10B IP

The Aurora IP provides a tx_out_clk (78.125 MHz in this example), which is used as

the user_clock. A BUFG buffer is required between tx_out_clk and the clock inputs.

The init clocks and DRP clocks are connected to clk_50_mhz provided by the imperix

firmware IP.

To learn more about the different clocks, please refer to the Aurora 8B10B IP and the

GTX transceiver user guides.

https://imperix.com/doc/wp-content/uploads/2024/11/image-2.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-2.png
https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/BUFG
https://docs.amd.com/r/en-US/pg046-aurora-8b10b/Aurora-8B/10B-v11.1-LogiCORE-IP-Product-Guide
https://docs.amd.com/v/u/en-US/ug476_7Series_Transceivers

Aurora IP clock connections

Connecting the data interfaces of the Aurora 8B/10B IP

The AXI-Stream interface module (ix_axis_interface) is used to exchange data with

the Aurora IPs. As the AXI-Stream interface module and the Aurora IPs are not in the

same clock domain, AXI4-Stream Data FIFO with independent clocks are used to

manage the clock domain crossing. The figure below shows how the FIFOs are

connected in the system.

To learn more about the AXI-Stream interface module, please refer to the getting

started page.

Connecting the shared logic interface of the Aurora 8B/10B IP

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_clock_interface.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_clock_interface.png
https://docs.amd.com/r/en-US/pg085-axi4stream-infrastructure/AXI4-Stream-Data-FIFO
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_data_interface-2-1024x645.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_data_interface-2-1024x645.png

The following signals, connected to the shared logic of Aurora, must be connected

between the GT interface of the imperix firmware IP and each Aurora IP:

gt0_qplllock

gt0_qpllrefclklost

gt_qpllclk_quad1

gt_qpllrefclk_quad1

gt_refclk1

Connecting the TX/RX signals of the Aurora 8B/10B IP

Finally, the rxn, rxp, txn, and txp signals of each Aurora IP must be connected to the

corresponding pins of the imperix firmware IP to map each Aurora IP to a physical

SFP port on the board.

https://imperix.com/doc/wp-content/uploads/2024/10/loopback_shared_logic-1024x852.png
https://imperix.com/doc/wp-content/uploads/2024/10/loopback_shared_logic-1024x852.png

Finally, the bitstream can be generated and loaded in an imperix controller, as

explained on the getting started page.

Aurora 64B/66B loopback example

In a similar manner to the Aurora 8B/10B example, it is possible to configure an

Aurora 64B/66B communication on SFP ports. This section details the steps to

adapt the Aurora 8B/10B example described in the previous section to use an Aurora

64B/66B communication.

The Vivado block design of the Aurora 64B/66B loopback example is shown below.

Click here to open as PDF

The following zip file contains scripts to automatically generate this design.

https://imperix.com/doc/wp-content/uploads/2024/10/image.png
https://imperix.com/doc/wp-content/uploads/2024/10/image.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/wp-content/uploads/2025/01/image-1024x348.png
https://imperix.com/doc/wp-content/uploads/2025/01/image-1024x348.png
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b_66b.pdf

aurora_64b66b_exampleDownload aurora_64b66b_example.zip

To use the script , please follow the same instructions as for the 8B/10B example.

Since this example has the same behavior as the 8B/10B example, it is possible to

reuse the MATLAB model above to test the design.

Instantiating the Aurora 64B/66B IPs

The two Aurora 8B/10B IPs are replaced by Aurora 64B/66B IPs.

The connections of the following signals are the same as for the Aurora 8B/10B IP:

The init and DRP clocks are connected to clk_50_mhz, which is provided by the

imperix firmware IP.

The shared logic signals (refclk1_in, gt_qpllclk_quad1,gt_qpllrefclk_quad1) are

connected to the GT interface of the imperix firmware IP.

The rxn, rxp, txn and txp signals are connected to the imperix firmware IP.

The configuration of the Aurora 64B/66B IP follows the same rules as the Aurora

8B/10B IP:

GT Reflck must be set to 250 MHz as the clock is generated outside the FPGA.

“Include Shared Logic in example design” must be checked, because the

shared logic is already instantiated inside the imperix firmware.

The other settings can be changed freely.

Connecting the Aurora 64B/66B IP clocks

A Clocking Wizard is instantiated for each Aurora 64B/66B IP to generate the user

clock and the sync clock from the tx_out clock. The Clocking Wizard is configured as

follows:

https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/wp-content/uploads/2025/01/aurora_64b66b_example.zip
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#matlab
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_aurora-1024x412.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_aurora-1024x412.png

The primitive is set to MMCM.

The input frequency is set to the tx_out_clk frequency of the Aurora 64B/66B IP.

This frequency can be calculated from the line rate: tx_out_clk_freq = line_rate /

32. With a line rate of 5 Gbps we get a tx_out_clk of 156.25 MHz.

The source is set to Global buffer.

The frequency of output 1 is set to half the frequency of tx_out_clk, in this

example 78.125 MHz.

The frequency of output 2 is set to the same frequency as tx_out_clk, in this

example 156.25 MHz.

The drive buffer for both outputs is set to BUFG .

https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_1.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_1.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_2-1024x699.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_2-1024x699.png

The Clocking Wizards are connected to the Aurora 64B/66B IP as follows:

The input of the Clocking Wizard is connected to tx_out_clk on the Aurora

64B/66B IP.

Output 1 of the Clocking Wizard is connected to user_clk on the Aurora

64B/66B IP.

Output 2 of the Clocking Wizard is connected to sync_clk on the Aurora

64B/66B IP.

Connecting the Aurora 64B/66B IP reset signals

Unlike the Aurora 8B/10B IP, the Aurora 64B/66B must be properly reset during

initialisation to function properly. In this example, the reset is handled by the

Processor System Reset IP provided by Xilinx/AMD. The IP is used with default

settings and connected as follows:

The slowest_syn_clk input of the Processor System Reset IP is connected to

the init_clk of the Aurora 64B/66B IP.

https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_3-1024x428.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_clk_wiz_3-1024x428.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_rst-1024x655.png
https://imperix.com/doc/wp-content/uploads/2025/01/64b_66b_rst-1024x655.png

The ext_reset_in, aux_reset_in and dcm_locked inputs are connected to a

constant set to 1.

The pma_init signal of the Aurora 64B/66B IP is connected to the

bus_struct_reset.

The reset_pb signal of the Aurora 64B/66B IP is connected to the

peripheral_reset.

Connecting the data interfaces of the Aurora 64B/66B IP

Since the Aurora 64B/66B provides a 64-bit data interface, 64-bit FIFOs are used and

the data from the AXI stream interface is padded with 32 additional zeros to comply

with the FIFOs’ width. Additional zeros are then removed in the incoming stream

before being fed back to the AXI stream interface.

Finally, the bitstream can be generated and used in the same way as in the Aurora

8B/10B example.

Going further

The page high-level synthesis for FPGA developments shows how automated code

generation tools such as Model Composer and Vitis HLS can be used to facilitate the

development of FPGA modules. Like the Aurora 8B/10B IP, they use AXI4-Streams to

move data around.

The FPGA development on imperix controllers summarizes all the other FPGA-

related pages.

https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_1-1024x261.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_1-1024x261.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_2-1024x210.png
https://imperix.com/doc/wp-content/uploads/2024/11/64b_66b_clk_fifo_2-1024x210.png
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

