Setting up the FPGA development toolchain

PN120 | Posted on March 26,2021 | Updated on May 7, 2025

Benoit STEINMANN
Software Team Leader
imperix « in

Table of Contents

e Software resources

¢ |Installing Vivado SDK

e Creating_a sandbox template project

¢ Adding custom logic to the sandbox project
e Using the USR pins

e Loading the bitstream into the device

e Update the imperix firmware IP sources

This note provides step-by-step guidance to create a Xilinx Vivado project, add customized logic, generate a bitstream,
and load it into the B-Box/B-Board.

The required software and sources files are:

¢ Vivado HL Design Suite (available for free as the WebPACK edition)
e Sandbox sources

This page covers the installation of an older version of the Vivado SDK (2019.2). We recommend reading the newest
pages:

— PN168: Xilinx Vivado Design Suite installation

— PN159: Getting started with FPGA control development

Software resources

Installing Vivado SDK

A Xilinx account is needed to download and install the Vivado SDK. It can be created by following the link
https:/www.xilinx.com/registration/create-account.html.

1. Go to Xilinx download page:
https:/www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html

2. Download the installer. (for the free Windows version select ” Vivado HLx: WebPACK and Editions”)

3. Run the downloaded file

4. Enter your login credentials and select Download and Install Now

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://www.xilinx.com/registration/create-account.html.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html

$ Xilinx Unified 2019.2 Installer - Select Install Type — O X

Select Install Type

Plesse select instal type and provide your Xiinx.com user ID anc for authentication.

[User A bicai

Plaase provide your Xiinx user sccount credentisls to dovmload the required fies.
I you don't have an account, plesse creste one. If you forgot your password, you can resst i hers.

User 1D [impersc |

Password [o

[(@) Dovmload and Install Now

Select your desired devi installer wil dowinload and install just what is required. Downloaded installation files vl be saved for future use.
NOTE: Future install using these dowmloaded files vill be restricted to the options selected during this install. For access toall options later, choase *Download Full Image™.

1 (7) Dovmicad Full Image (Install Separately)

The installer will davmbcsd an mags containing sl devices and tool options for lster instalistion. Uss this option Fyou vish to instsl s full imsge on & netwark drive or slow dffsrsnt
users madmum fleibiity when instaling.

Copyright © 1986-2020 Xilinx, Inc. Al rights reserved. <Back | [Hed> || Gonedl

1. Select Vivado

£ Xilinxu

ed 2019.2 Installer - Select Product to Install - m} >

Select Product to Install

Select a product to confinue instaliatior e able to customize the content in the next page.

() vitis
Installs Vitis Core Development Kit for embedded software and application acceleration development on Xiinx platforms. Vitis installstion includes Vivado Design Suite.

(@) vivado
Includes the full complement of Vivado Design Suite tools for design, induding C-based design with Vivado High-Level Synthesis, implementation, verification and device
programming. Complete device support, cable driver, and Document Navigator included.

(Z) ©n-Premisss Install for Cloud Deployments

Install an-premises version of tocis for doud deployments.

(2) BoctGen

Installs Boctgen for cresting bootable images targeling Xiinx SoCs and FPGAS.

(7) Leb Edition

Installs only the Xiinx Vivado Lab Edition. This standalone product incudes the Vivado Device Programmer and Vivado Logic Analyzer tooks.
(C) Hardware Server
Installs hardviare server and JTAG cable drivers for remote debugging.

(0) Documentation Havigator (Standalone)

Xilinx Documentation Navigator (DocNav) provides access to Xiinx technical documentation both on the Web and on the Deskiop, This & a standalone installation vithout Vivado
Design Suite,

Copyright © 1585-2020 Xilin, Tnc. All fights reserved, <Back | [Net> || cancel

2. Select Vivado HL WebPACK

https://imperix.com/doc/wp-content/uploads/2021/03/image-141.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-141.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-142.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-142.png

v o
i. Xilinx U

ed 2019.2 Installer - Select Edition to Install - [m| X
Select Edition to Install

Select an edition antinue installatior

tent in the next page.

(@ Vivado HL WebPACK

Vivado HL WebPACK is the no cost, device limited version of Vivado HL Design Edibn. Users can optionally add Model Composer and System Generstor for DSP to this installation.

(Z) Vivago HL Design Edition

Vivado HL Design Edition includes the full complament of Vivado Design Suite tools for design, including C-based design with Vivado High-Level Synthesis, implementation,

verfication and device programming. Complete device support, cable drivers and Documentation Navigator are incuded. Users can optianally add Model Composer to this
installation.

(C) Vivado HL System Edition

Vivado HL System Edition is 2 superset of Vivado HL Design Edibion with the addition of System Generstor for DSP. Complete device support, cable drivers and Documentation
Navigstor are included. Users can opticnally dd Model Composer to this installstion.

Copyright © 19862020 Xilinx, Inc. Al rights reserved,

3. The only mandatory item is Zynq-7000 support

§ Xilinx Unified 2019.2 Installer - Vivado HL WebPACK - m| e
Vivado HL WebPACK

Customize your installation by (de)selecting items in the tree below. Moving cursor over selections below provide additionsal info

Vivado HL WebPACK is the no cost, device limited version of Vivado HL Design Edition. Users can optionally add Model Composer and Sy: for DSP

Zyng-7000 {limited support)

2Zyng MPSoC (imited support)

i Zynq UltraScale+ RFSoC

[~ M 7 Series (limited support)
— Artie7

Kintex-7
Spartan-7
Virtex-7
UktraScale (limited support
UtraScale+ (linted support)
- Enginesring Sample Devices
S Installation Opticns
Instal Cable Drivers (You MUST disconnect all Xiinx Plstform Cable USB 11 cables before p
Enable WebTalk for Vivedo to send usage statistics to Xinx (Alvays enabled for WebPACK license)
Instal WinPCap for Ethernst Hardware Co-simulation
Launch configurafion manager to associste System Generator for DSP with MATLAB

Download Size: 11,43 GB

Disk Space Required: 35,86 GB

Copyright © 1586-2020 Xiiinx, Inc. Al rights reserved.

4. We recommend keeping the default installation directory

https://imperix.com/doc/wp-content/uploads/2021/03/image-143.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-143.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-144.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-144.png

§ Xilinx Unified 2019.2 Installer - Select Destination Directory - O X

Select Destination Directory

Choase installation options such s kecation and shortcuts.

- Installation Option: - Select shartcut and file association option:
Salect the installstion directory Create e
Cr\xiling] ’V)('lhnx Design Tools ‘
Create desktop shortcuts
C:\ilimd\Vivadc) 2019.2
i ivado| 20 Create file associstions
C:\giinx\DocNav Apply shortcut & Fle association selections to
(@) Current user
location
C:\¥ilind\ Dewnloads| Vivado_2019.2 ‘ O allusers
Required
Download Size: 1143 GB
Disk Space Required: 35.85 GB
Final Disk Usage: 213868
Disk Space Avaiisble: 7269 GB
Copyright © 1985-2020 Xilinx, Inc. All rights reserved. < Back Hext = Cancel

5. Hit Install

Creating a sandbox template project

Download the required sources to use the sandbox:

1. Download the archive sandbox_sources_3.x_xxxx.x.zip from imperix's website, under Support — Downloads

(https://imperix.com/downloads)

2. Unzip it and save the content somewhere on your PC, for instance in C: \imperix\.

| = | sandbox_sources -] x
Home Share View v o
« “ A | Chimperix\sandbox_sources v~ | O
Name Date modified Type
7 Quick access
constraints File folder
@ OneDrive hdl File folder
3 This PC ix_repository File folder
|_j Network
3 items =

The sandbox sources 3.4 are compatible with the SDK version 3.4.x and 3.5.x
To create a sandbox project:

. Open Vivado
. Click Create Project
. Chose a name and a location.
. Select project type RTL Project and check the box Do not specify sources at this time.
. Select the part xc7z030fbg676-3.
. Hit Finish. The project should open.
. In Settings, the preferred Target Language can be set (VHDL or Verilog).
. Go to the IP Catalog, right-click on Vivado Repository, hit Add repository...
Select C: /imperix/sandbox_sources/ix_repository/.
The IMPERIX_FW P, clock_gen, and user_regs interfaces should be found.

0 NOoO g WN =

https://imperix.com/doc/wp-content/uploads/2021/03/image-145.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-145.png
https://imperix.com/downloads
https://imperix.com/doc/wp-content/uploads/2021/03/image-146.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-146.png

¢ Add Repository X
0 1 repository was added to the project

Repository
~ gfimperix'sandbox_sourcesfiy_repository
~ |Ps (1)
¥ IMPERIX_FW (imperix.ch:ixlXIP:3.6)
~ |nterfaces (2)
1 clock_gen

[user_regs

9. Click on Create block design, name it “top” and click OK

10. Open the freshly created block design, do a right-click, select Add IP... and search for “IMPERIX_FW” and hit ENTER.

IXIP_0

oorR + |||

FIxeD_10 + |||

aoc + |||

s80 + |||

cock_1 + |||

cLock o + |||

||+ sei cLock_2 + |||

- fll[15:0] CLOCK_3 + ||
== gpi[15:0] adc_done_pulse
== private_in[66:0] Ix clk_250_mhz
= sb pwm[31:0] data_valid pulse
== yser fw id[15:0] gpo[15:0]

is_in_bbox
private_out[44:0]
pwm([31:0]
reading
sampling_pulse

sync_pulse

IMPERIX_FW

11. Keep the [Ctrl] key pressed and select the IP pins f1t, gpi, private_in, DDR, FIXED_IO, gpo, pwm and private_out.
Hit [Ctrl+T] to create top-level ports.

12. Remove the “_0" from every port name generated. For instance “f1t_0[15:0]" becomes “f1t[15:0]".

13. The user_fw_id input may be used to identify the firmware version. We recommend instantiating a Constant IP
(Right-click, Add IP..., search for Constant) to give an identification number to the design.

https://imperix.com/doc/wp-content/uploads/2021/03/image-147.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-147.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-148.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-148.png

IXIP_0

ooR + ||—{> oor
FIXED_IO + |"—D FIXED_IO
A0c + ||
a0 + |
ctock_1 =+ |||
cLock o + |||
|| + sBi CLOCK_ 2 + |||
GETN it15:0) - cLock_s =+ |||
goi15:0] [9pi[15:0] adc_done_pulse =
private_in(66:0] [private_in[66:0] IX dlk_250_mhz =

USER_ID = sb_pwm[31:0) data_valid_puise =

user_fw_id[15:0] gpo[15:0] me———]"> gpo[15:0]
‘ dout[15:0] F is_in_bbox
private_out(44:0] me———"% private_oul[44:0]

Constant PWM[31:0] M » pwm([31:0]

reading =

sampling_pulse ™

sync_pulse =

IMPERIX_FW

14. Go to the Sources tab, right-click on the block design file (top.bd) and select Create HDL Wrapper...
In the dialog box choose Let Vivado manager wrapper and auto-update and hit OK.
15. Right-click on Design Sources folder
Choose Add Sources...
Check Add or create constraint
Click on Add Files
Select C: /imperix/sandbox_sources/constraints/sandbox_pins.xdc
Uncheck Copy sources into the project
Hit Finish

From this point the project is synthesizable. The next chapter covers how to add custom logic to the design.

Information on how to use the imperix firmware IP can be found in the product note about editing the FPGA firmware.

Adding custom logic to the sandbox project

The following steps use the file sandbox_template.vhd as an example to illustrate how to add a VHDL entity to the
project and interface it to the imperix firmware IP.

1. Right-click on Design Sources and choose Add Sources.... Check Add or create design sources.

2. Select imperix_sandbox_sources/hdl/sandbox_template.vhd.
We recommend unchecking “Copy sources into project” and working directly from the files in the folder
imperix_sandbox_sources/hdl/ so the sources can be shared across multiple projects.

3. Right-click somewhere in the block design and chose Add module... Select the SandboxTemplate module.
Alternatively, you can drag the file listed in the Design Sources and drop it on your diagram.

4. Connect the pins as follows:

SandboxTemplate_0 XIP_0
s8I +|||—|||+ sBI DDR +|"—D DDR
ADC + || e—e]|| + ADC FIXED_IO + ||——"]"> FixeD_lO
s80 + ||| +—e]||+ seo cLock_1 + |||
RTL adc_done_pulse_in me<—a-= adc_done_pulse CLOCK_0 + |||
ol in =—t—t= clk_250_mhz cLock_2 + |||
data_valid_pulse_in === data_valid_puise cLock s + |||
Sb_pwm_Oul[31:0] e sb_pwm[31:0] u 9po[15:0]] D gpol15:0]
Ix private_out[44:0] memef ™ private_out44-0]
SandboxTemplate_v1_0 pwm({31:0] -—| , pwm[31:0]
EN I15:0) is_in_bbox =
gnilt50] [gpil15:0] reading =
private_inf66:0] [private_in[66:0] sampling_pulse =
USER_ID sync_pulse =
G0Ul[15:0] e user_fw_id[15:0]

Constant IMPERIX_FW

The imperix firmware IP provides 64 SBI registers, 64 SBO registers, and 24 ADC registers which are grouped in interfaces
for better readability. The sandbox_template.vhd illustrates how to use X_INTERFACE_INFO attributes to infer the ADC,
SBI, and SBO interfaces.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

https://imperix.com/doc/wp-content/uploads/2021/03/image-149-1024x570.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-149-1024x570.png
https://imperix.com/doc/help/editing-the-fpga-firmware-using-the-sandbox
https://imperix.com/doc/wp-content/uploads/2021/03/image-150-1024x438.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-150-1024x438.png

entity SandboxTemplate is
Port (

-- Analog- to digital conversion results in 2's complement format
adc_00_in : in std_logic_vector(15 downto @) := (others => '0');
adc_01_in : in std_logic_vector(15 downto @) := (others => '0');
adc_02_in : in std_logic_vector(15 downto @) := (others => '0");
adc_03_in : in std_logic_vector(15 downto @) := (others => '0");

adc_04 _in : in std_logic_vector(15 downto @) := (others => '0");
adc_05_in : in std_logic_vector(15 downto @) := (others => '0');
adc_06_in : in std_logic_vector(15 downto @) := (others => '0');
adc_07_in : in std_logic_vector(15 downto @) := (others => '0');
adc_08 _in : in std_logic_vector(15 downto @) := (others => '0');
adc_09_in : in std_logic_vector(15 downto @) := (others => '0');
adc_10_in : in std_logic_vector(15 downto @) := (others => '0');
adc_11_in : in std_logic_vector(15 downto @) := (others => '0');
adc_12_in : in std_logic_vector(15 downto @) := (others => '0");
adc_13 in : in std_logic_vector(15 downto @) := (others => '0");
adc_14 in : in std_logic_vector(15 downto @) := (others => '0");
adc_15_in : in std_logic_vector(15 downto @) := (others => '0');

-- Output to the sandbox for CPU to FPGA communication

sbo_reg 00 _in : in std_logic_vector(15 downto @) := (others => '@');
sbo_reg 01 in : in std_logic_vector(15 downto 0) (others => '0");
sbo_reg 02 _in : in std_logic_vector(15 downto @) := (others => '@");
-- you can add more registers here

-- Timing pulses

sampling_pulse_in : in std_logic;
adc_done_pulse_in : in std_logic;
read_pulse_in : in std_logic;
data_valid_pulse_in : in std_logic;

-- Sandbox PWM
sb_pwm_out : out std_logic_vector(31 downto 9);

-- Main clock running at 250 MHz
clk_in : in std_logic
)s
end SandboxTemplate;

architecture impl of SandboxTemplate is

ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_PARAMETER : STRING;

ATTRIBUTE X_INTERFACE_INFO of clk: SIGNAL is "xilinx.com:signal:clock:1.0 clk CLK";

-- Informations to infer the SBI interface

ATTRIBUTE X_INTERFACE_INFO of sbi_reg_00_out: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 SBI reg_o00";
ATTRIBUTE X_INTERFACE_INFO of sbi_reg_ 01 out: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 SBI reg_01";
ATTRIBUTE X_INTERFACE_INFO of sbi_reg_02_out: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 SBI reg_02";

-- Informations to infer the SBO interface

ATTRIBUTE X_INTERFACE_INFO of sbo_reg 00 _in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 SBO reg_00";
ATTRIBUTE X_INTERFACE_INFO of sbo_reg 01 in: SIGNAL is "imperix.ch:ix:user_regs _rtl:1.0 SBO reg 01";
ATTRIBUTE X_INTERFACE_INFO of sbo_reg 02 _in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 SBO reg 02";
-- Informations to infer the ADC interface

ATTRIBUTE X_INTERFACE_INFO of adc_0@ in: SIGNAL is "imperix.ch:ix:user_regs _rtl:1.0 ADC reg_00";
ATTRIBUTE X_INTERFACE_INFO of adc_@1_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_01l1";
ATTRIBUTE X_INTERFACE_INFO of adc_02_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_02";
ATTRIBUTE X_INTERFACE_INFO of adc_03_in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 ADC reg_03";
ATTRIBUTE X_INTERFACE_INFO of adc_04_in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 ADC reg_04";
ATTRIBUTE X_INTERFACE_INFO of adc_05_in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 ADC reg_05";
ATTRIBUTE X_INTERFACE_INFO of adc_06_in: SIGNAL is "imperix.ch:ix:user_regs rtl:1.0 ADC reg_06";
ATTRIBUTE X_INTERFACE_INFO of adc_©7_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_07";
ATTRIBUTE X_INTERFACE_INFO of adc_08_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_08";
ATTRIBUTE X_INTERFACE_INFO of adc_@9_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_09";
ATTRIBUTE X_INTERFACE_INFO of adc_10 in: SIGNAL is "imperix.ch:ix:user_regs _rtl:1.0 ADC reg_10";
ATTRIBUTE X_INTERFACE_INFO of adc_11_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_11";
ATTRIBUTE X_INTERFACE_INFO of adc_12_in: SIGNAL is "imperix.ch:ix:user_regs _rtl:1.0 ADC reg_12";
ATTRIBUTE X_INTERFACE_INFO of adc_13_in: SIGNAL is "imperix.ch:ix:user_regs _rtl:1.0 ADC reg_13";

ATTRIBUTE X_INTERFACE_INFO of adc_14_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_14";
ATTRIBUTE X_INTERFACE_INFO of adc_15_in: SIGNAL is "imperix.ch:ix:user_regs_rtl:1.0 ADC reg_15";

begin
sb_pwm_out <= (others => '0');
sbi_reg 00 _out <= (others => '0");
sbi_reg 00 _out <= (others => '0");
sbi_reg 00 _out <= (others => '0");
MY_PROCESS : process(clk_in)

begin
if rising_edge(clk_in) then

if adc_done_pulse_in = '1' then
-- sampled value are available in ADC registers
end if;

if data_valid_pulse_in = '1' then
-- new data has been written to SBO registers
end if;

end if;
end process MY_PROCESS;

end impl; Code language: VHDL (vhdl)

The use of interfaces is optional. The user can instead expand an IP interface by clicking on the “+" and directly use the
ports which can be useful if the registers from a single bus have to be connected to multiple modules.

Using the USR pins
The file sandbox_pins.xdc contains the constraints for the 36 USR pins.
To use USR pins

e un-comment the line of the pins to use
o create the corresponding ports in the Vivado block design (right click, Create Port...)

HHHH

set_property -dict {PACKAGE_PIN AE10 IOSTANDARD LVCMOS33} [get_ports {usr_0}]
set_property -dict {PACKAGE_PIN AF10 IOSTANDARD LVCMOS33} [get_ports {usr_1}]
set_property -dict {PACKAGE_PIN AE12 IOSTANDARD LVCMOS33} [get_ports {usr_2}]
#set_property -dict {PACKAGE_PIN AF12 IOSTANDARD LVCM0S33} [get_ports {usr_3}]
#set_property -dict {PACKAGE_PIN AE13 IOSTANDARD LVCMO0S33} [get_ports {usr_4}]
#set_property -dict {PACKAGE_PIN AF13 IOSTANDARD LVCM0S33} [get_ports {usr_5}]
.. .Code language: Tcl (tcl)

usr 0 [> — port_a_in SBI +|||
ADC + |
usr 1 [— port_b_in $80 + "

adc_done_pulse_in —<
ck_in —4———
data_valid_pulse_in —e—————

sb_pwm_out[31:0]
port_c_out = [> usr2

Loading the bitstream into the device

https://imperix.com/doc/wp-content/uploads/2021/03/image-151-1024x439.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-151-1024x439.png

Generate and export the bitstream:

1. Click Generate bitstream. It will launch the synthesis, implementation and bitstream generation
2. Click on File — Export — Export Bitstream File...

Using BB Control, the bitstream can be loaded using the following procedure:

1. Go to the Configuration tab
2. Click on the “import bitstream” button, it will upload the bitstream into the B-Board SD card

SD card
CPU 0| x| (no file found) - [load at startup
FPGA I%X (no file found) - [load at startup

| Import a customized bitstream in the SD card |

A check in the load at startup checkbox indicates that the device will load the imported customized bitstream at the next
power-cycle instead of the standard one.

SD card
CPU 0|[x| {no file found) - [Ioad at startup
FPGA | %| my_bitstream.bit 05/03/2020 13:50 load at startup

In the Versions section is indicated if the device has a customized bitstream loaded.

Versions
Release 3.4BETA
BE Control 14065
Supervisor 05069
FPGA firmware {customized) 08062 (user_fw_id: 9999)
Upgrade
The information is also available from the Message Log.
¢ BB Control — [m] ®
A 10.10.10,40 X 4+ O
[Ethernet: connected
o Disconnect @ Stop code: Enable outputs [User code: running (9%)

[Outputs: disabled

Type Time Message
16:46:56 BBOS v3.4.0 BETA, 9 Mar 2020 11:32:44

16:46:57 1 device has been detected.

16:46:57 #0: B-Board (customized FPGA firmware, user_fuv_id: 9999)
16:46:58 Userlnit() executed successfully. Applying configuration...
16:46:58 Configuration completed successfully. Interrupts enabled.

Debugging

ecoee

Datalogging

i Message Log

‘Analog input configur ator

Configuration

€:/Users/benoit-ixjmy_workspace/B83_CPP_Template/Debug/B83_CPP_Template. elf

Update the imperix firmware IP sources

The version of the imperix IP currently in use is found in the block properties of the IP (by clicking on the IP)

https://imperix.com/doc/wp-content/uploads/2021/03/image-152.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-152.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-153.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-153.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-154.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-154.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-155.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-155.png

Block Properties ? 00 X

¥ IXIP_0 - &
LS
Version: 34(Rev. 1)
Description: Imperix firmware IP
Status: Production

To update the sources of the imperix IP

1. Replace the sandbox sources by the ones of the targeted version.
2. Do aright click on Design Sources and click on Refresh Hierarchy

Sources x Design Signals ? 00
Q' = & +) o
~ Design Sources (1}
> @ & top_wral
» = Constraints (1) Hierarchy Update »
~ [Simulation Sourct C Refresh Hierarchy
> i (1)
sim_1(IP Hierarchy »
» [Utility Sources
Edit Constraints Sets...
Edit Simulation Sets...

4 AddSources... It+A

Report IP Status

Hierarchy |P Sources Libraries Compile Order

3. An information message should appear, click on Refresh IP Catalog

BLOCK DESIGN - top

© P Catalog is out-of-date. Refresh FP Catalog

Detected IP Catalog file changes
Sources < Design | Signals agram

4. Finally, under the IP Status tab, select the IXIP and click Upgrade Selected

TciConsole | Messages Log | IPStatus x Reports | Design Runs 2
Q T & C [MinorChange (1)] Up-to-date (1)
Source File & P Stalus Recomm.. ©! ChangeLog IP Name CurrentVersion RecommendedVersion License Current Pant
v o (1 ~
% MaP_o IP minor version cha.. Upgrade IP IMPERD_FW 3.4 (Rev. 1) 36(Rev. 1) Included xc7z030Mg676-3
Upgrade Selected N

https://imperix.com/doc/wp-content/uploads/2021/03/image-156.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-156.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151057.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151057.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151216.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151216.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151400-1024x191.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20200817-151400-1024x191.png

