
Variable frequency operation with the B-Box/B-

Board

PN121 | Posted on March 29, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Working principle of variable frequency operation

Remarks

Variable frequency with ACG SDK

Variable frequency with C++ SDK

This note covers the configuration and implementation of variable frequency

operation with imperix controllers (B-Box RCP and B-BoardPRO).

Changing the modulation frequency during the control execution may be useful in

applications such as resonant converters or in case of dynamic reconfiguration

(start-up of drives for instance). This note shows how the B-Board PRO and B-Box

RCP support the real-time tuning of the modulators’ switching frequency.

The variable-frequency feature has been introduced in version 3.4 for C++ and in

version 3.6 for ACG (Simulink & PLECS).

The installer for the latest SDK is available on imperix website, under Support →
Downloads (https://imperix.com/downloads)

Working principle of variable frequency operation

As a CB-PWM block can be freely mapped to any of the four available CLK blocks,

variable-frequency modulation is designed to be implemented by:

Mapping the CB-PWM block that must have a variable frequency to a specific

CLK.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/downloads

Changing the frequency of the corresponding CLK during the execution.

Remarks

More than one variable-frequencies can be used simultaneously.

The interrupt and the sampling processes are linked by design to the same CLK
(CLOCK_0) and their frequency can not be changed during the execution.

Consequently, an additional CLK block, mapped on CLOCK_1, CLOCK_2, or

CLOCK_3, must be used for variable frequency operation.

The CLK blocks are implemented such that frequency changes are glitch-less,

i.e. does not generate any unexpected behavior during the transition. Any

frequency step can therefore be done at any time during operation.

A change in the frequency is only applied at reset of the clock source counter.

This means that the CLK block completes the running period before changing

its frequency.

Variable frequency with ACG SDK

The screenshots below show how to use and configure a Clock generator (CLK)

block for variable frequency operation.

https://imperix.com/doc/software/clk-clock-generator

Simulink

https://imperix.com/doc/wp-content/uploads/2021/03/image-182.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-182.png

PLECS

Variable frequency with C++ SDK

As shown in the following code snippet, the frequency change is performed by re-

configuring the clock generator CLOCK_1 during real-time control execution. This

example uses the following configuration:

Clock Linked to Configuration

CLOCK_0 Interrupt and sampling Fixed frequency (50kHz)

CLOCK_1 PWM_CHANNEL_0 Variable frequency

tUserSafe UserInit(void)
{
 // The interrupt and sampling use CLOCK_0
 Clock_SetFrequency(CLOCK_0, 50e3);
 ConfigureMainInterrupt(UserInterrupt, CLOCK_0, 0.5);

 // The PWM_CHANNEL_0 uses CLOCK_1 which is set as real-time tunable

https://imperix.com/doc/wp-content/uploads/2021/03/image-183.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-183.png

 Clock_SetFrequency(CLOCK_1, 10e3);
 Clock_ConfigureAsRealTimeTunable(CLOCK_1);

 CbPwm_ConfigureClock(PWM_CHANNEL_0, CLOCK_1);
 CbPwm_ConfigureOutputMode(PWM_CHANNEL_0, COMPLEMENTARY);
 CbPwm_ConfigureCarrier(PWM_CHANNEL_0, TRIANGLE);
 CbPwm_ConfigureDeadTime(PWM_CHANNEL_0, 1e-6);
 CbPwm_SetDutyCycle(PWM_CHANNEL_0, 0.5);
 CbPwm_Activate(PWM_CHANNEL_0);

 Adc_ConfigureInput(0, GAIN_I, 0.0);
 Adc_ConfigureInput(1, GAIN_V, 0.0);

 return SAFE;
}

// Global variables can be observed from Cockpit
float current;
float voltage;
float freq;

tUserSafe UserInterrupt(void)
{
 current = Adc_GetValue(0);
 voltage = Adc_GetValue(1);

 freq = GetOptimizedFrequency(current, voltage);

 Clock_SetFrequency(CLOCK_0, freq);

 return SAFE;
}Code language: C++ (cpp)

