
SFP communication with an RTDS MMC simulator

PN122 | Posted on December 18, 2024 | Updated on May 23, 2025

François LEDENT

Development Engineer

•

Table of Contents

Communication chain

Required software

Downloads

Results

Provided files

Simulink model

Vivado project

Going further

As introduced in PN118, SFP communication constitutes a convenient way to

interconnect devices. Widely used, it offers an efficient layer on which protocols such

as Aurora can be implemented to exchange data.

In this example, the SFP communication connects a B-Box RCP (or B-Board PRO) to

a HIL simulator from RTDS. It makes the bridge between the control – executed in

the B-Box RCP (or B-Board PRO) – and a simulation model of an MMC converter

running on the GTSOC board.

Following the configuration of the MMC bundle, the simulated MMC contains 6 arms

and 4 submodules per arm, as shown in Fig. 1. The closed-loop model provided to

show proper communication and control of the MMC is also directly adapted from

the AN009.

https://www.linkedin.com/in/francois-ledent/
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://www.rtds.com/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/modular-multilevel-converter/
https://imperix.com/doc/implementation/mmc-converter

Fig. 1 – Illustration of the considered setup.

Communication chain

The control and communication chain is depicted in Fig. 2. The closed-loop control

running in the CPU of the B-Box controller generates duty cycles, which are converted

to PWM signals by the carrier-based modulator (CB-PWM). These PWM signals are

directly available in the FPGA, where they are packed into frames by the RTDS MMC

driver and transferred to the MMC simulation model via Aurora 8B/10B.

The simulation model outputs computed voltages and currents, as well as additional

real-time data (e.g. submodules status), and sends them back as Aurora frames to

the B-Box (or B-Board). Once received, the frames are decoded by the driver and their

content is made available to the B-Box CPU through SBI registers.

Fig. 2 – Overall communication chain, including the SFP communication.

Required software

Xilinx Vivado 2022.1 or later (previous versions may work but have not been

tested).

Installation guide available here.

https://imperix.com/doc/wp-content/uploads/2024/11/kb_illustration_resized.png
https://imperix.com/doc/wp-content/uploads/2024/11/kb_illustration_resized.png
https://imperix.com/doc/wp-content/uploads/2024/11/overall-structure_v2.png
https://imperix.com/doc/wp-content/uploads/2024/11/overall-structure_v2.png
https://imperix.com/doc/help/vivado-design-suite-installation

FPGA sandbox template 3.10 or later.

Available on the FPGA download page.

C++ or ACG SDK version 2024.3 or later.

Available on the SDK download page.

FPGA-based Aurora communication is only available for SDK version 2024.3 or later.

Latest SDK version is available on the download page.

Downloads

The Simulink model running in the CPU and the Vivado project to generate the FPGA

bitstream are available below.

Simulink model

RTDS_MMC_SFP_Simulink.zip

Vivado project generation scripts

RTDS_MMC_SFP_gen_script.zip

As dead-times are not introduced in the gating signals and relays are not considered,

the provided closed-loop control is not meant to run with real power modules. To

control power modules, please refer to the original control model from the AN009.

Results

As shown in Fig. 3, the closed-loop control generates a three-phase output current,

while controlling the bus current and the submodule voltages. The submodule

voltages are limited to 63.5V (or kV, if configured in kV/kA on the RTDS side) in the

RTDS, explaining why the bus voltage has been intentionally reduced to 100V.

All measurements and real-time data are available to the user in the CPU and the

FPGA. The section Simulink model describes which SBI registers to consider for

accessing the received quantities. In the FPGA, dedicated registers can be directly

accessed at the output of the RTDS MMC driver.

https://imperix.com/doc/help/download-and-update-imperix-ip-for-fpga-sandbox
https://imperix.com/downloads/
https://imperix.com/downloads/
https://imperix.com/doc/wp-content/uploads/2024/12/RTDS_MMC_SFP_Simulink.zip
https://imperix.com/doc/wp-content/uploads/2024/11/RTDS_MMC_SFP_gen_script.zip
https://imperix.com/doc/example/mmc-converter

Fig. 3 – Cockpit interface when controlling a 4-SM MMC.

Provided files

Simulink model

In order to validate the proper communication between the MMC model running on

the RTDS GTSOC V2, a simple closed-loop control model – depicted in Fig. 4 – is

provided. This model is largely inspired by the AN009, where more information about

the operation principles of the MMC converter and controller is available.

Fig. 4 – Simulink model running in the B-Box RCP (or B-Board PRO).

From ADC to SBI

https://imperix.com/doc/wp-content/uploads/2024/11/Cockpit_RTDS_MMC-1024x613.png
https://imperix.com/doc/wp-content/uploads/2024/11/Cockpit_RTDS_MMC-1024x613.png
https://imperix.com/doc/example/mmc-converter
https://imperix.com/doc/wp-content/uploads/2024/11/Screenshot-2024-12-12-170732-1024x582.png
https://imperix.com/doc/wp-content/uploads/2024/11/Screenshot-2024-12-12-170732-1024x582.png
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/

Unlike the model from the AN009, measured quantities are not accessed via

classical ADC, but rather received from the RTDS simulator through the SFP

communication. To achieve a high rate and reduce the CPU load, the reception

mechanism is fully handled by the FPGA.

Imperix provides an easy way to transfer data between the CPU and the FPGA: the

SBI and SBO registers. As explained in Vivado project section, SBI correspond to

FPGA registers that can be read from the CPU, while SBO correspond to FPGA

registers that can be written from the CPU.

Once a frame is received, the data is extracted by the driver and automatically routed

to SBI registers. To access it from the Simulink model, SBI blocks are instantiated, as

shown in Fig. 5. The mapping between the SBI and the received quantities can be

found in the SBI mapping section. Also, as quantities are assumed to be received as

16.16 fixed-point data (i.e. it can be configured from the RTDS GTSOC V2), an

additional gain of (0.5)^16 is inserted after they are interpreted as integers.

Fig. 5 – Parallel between the acquisition mechanism of the AN009 model

and the current model using SBI.

SBI mapping

Data received from the RTDS GTSOC V2 through the SFP communication can be

accessed via the following SBI registers. The mapping of the SBI to the received

quantities is available here below:

SBI Quantity SBI Quantity

0:1 Arm 1, voltage 18:19 Arm 4, voltage

2:3 Arm 1, current 20:21 Arm 4, current

4:5 Arm 1, valves voltage 22:23 Arm 4, valves voltage

6:7 Arm 2, voltage 24:25 Arm 5, voltage

8:9 Arm 2, current 26:27 Arm 5, current

10:11 Arm 2, valves voltage 28:29 Arm 5, valves voltage

https://imperix.com/doc/example/mmc-converter
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/wp-content/uploads/2024/12/adc_to_sbi-1024x293.png
https://imperix.com/doc/wp-content/uploads/2024/12/adc_to_sbi-1024x293.png
https://imperix.com/doc/example/mmc-converter

12:13 Arm 3, voltage 30:31 Arm 6, voltage

14:15 Arm 3, current 32:33 Arm 6, current

16:17 Arm 3, valves voltage 34:35 Arm 6, valves voltage

SBI Quantity SBI Quantity

36:47 Passthroughs 1-3 48:59 Passthroughs 4-6

SBI Quantity SBI Quantity

60:61,

62:63,

64:65,

66:67

Arm 1, SM voltage:

Vsm_A0, Vsm_A1,

Vsm_A2, Vsm_A3

84:85, 86:87,

88:89, 90:91

Arm 4, SM

voltage:

Vsm_B4,

Vsm_B5,

Vsm_B6,

Vsm_B7

68:69,

70:71,

72:73,

74:75

Arm 2, SM voltage:

Vsm_A4, Vsm_A5,

Vsm_A6, Vsm_A7

92:93, 94:95,

96:97, 98:99

Arm 5, SM

voltage:

Vsm_C0,

Vsm_C1,

Vsm_C2,

Vsm_C3

76:77,

78:79,

80:81,

82:83

Arm 3, SM voltage:

Vsm_B0, Vsm_B1,

Vsm_B2, Vsm_B3

100:101,

102:103,

104:105,

106:107

Arm 6, SM

voltage:

Vsm_C4,

Vsm_C5,

Vsm_C6,

Vsm_C7

SBI Quantity SBI Quantity

108:111 Arm 1, SM1-4 status 120:123 Arm 4, SM1-4 status

112:115 Arm 2, SM1-4 status 124:127 Arm 5, SM1-4 status

116:119 Arm 3, SM1-4 status 128:131 Arm 6, SM1-4 status

Note that most of the received quantities are 32-bit wide, which explains why they

extend over two 16-bit registers. In particular, voltages and currents are assumed to

be encoded as fixed-point 16.16 data. Status are 16-bit words, so each 16-bit SBI

register corresponds to one submodule status.

Vivado project

The Vivado block design of the current example is provided below, in Fig. 6. Next

sections briefly introduce the main parts of the design, and how to generate the

bitstream – running in the B-Box FPGA – from the RTDS_MMC_SFP_gen_script.zip

file provided in the Downloads section.

A detailed description of the RTDS MMC driver ports can be found in the driver

source file (cf. RTDS_MMC_SFP_gen_script.zip > usr_repo/RTDS_MMC.vhd).

Fig. 6 – Vivado block design.

Click here to open as a PDF.

VHDL modules description

core_state_decoder
Reads the core state and detects if the PWM are

enabled by the user in Cockpit.

gen_complementary

Spies the PWM signals transmitted to the optical

outputs and generates the complementary PWM

signals for the RTDS MMC driver. This block can

be discarded if the modulators already output

complementary PWM signals (configured as ‘dual’

in Simulink/PLECS). Produces a 0-vector if PWM

are not enabled.

RTDS_MMC Main driver. Takes the PWM signals as input

(along with the optional fast discharge and

deactivate signals), builds the 8-bit submodule

firing words and transmits them to the RTDS

https://imperix.com/doc/wp-content/uploads/2024/11/vivado-project-1024x656.png
https://imperix.com/doc/wp-content/uploads/2024/11/vivado-project-1024x656.png
https://imperix.com/doc/wp-content/uploads/2024/11/PN122_vivado-project.pdf

GTSOC V2. It also receives frames from the RTDS

GTSOC V2, unpacks them and updates the

corresponding registers of the RTDS_data

interface. The RTDS_data interface can be

extended to directly access any data of interest

from the FPGA. Please refer to the RTDS

datasheet for more details about the exchanged

data.

AXI4-Stream FIFO

Used for the clock domain crossing between the

main FPGA clock (250MHz) and the Aurora clock

domain (50MHz).

Aurora 8B/10B
Xilinx Aurora 8B/10B IP. The user manual is

available here.

reg_32b_to_16b_66

Splits each 32-bit input (here, 66 inputs) into two

16-bit outputs (here, 132 outputs), to comply with

the SBIO registers block 16-bit registers.

sbio_256_registers

Extended version (up to 256 registers) of the SBIO

registers block. This block contains input registers

that can be read from the CPU (SBI), and output

registers that can be written from the CPU (SBO).

It is therefore used to make the data received

from the RTDS available to the CPU.

How to generate the design and bitstream

The RTDS_MMC_SFP_gen_script.zip folder, provided in the Downloads section

above, contains all the necessary files to reproduce the design and generate the

bitstream locally. It contains:

the generation scripts (Batch file, TCL script)

the source files (VHDL files)

To generate the design using the script, download the

RTDS_MMC_SFP_gen_script.zip file and follow the steps described in PN118/Vivado

project. Before executing the .bat file, additionally copy the usr_repo folder within the

project directory, as shown below:

https://docs.amd.com/viewer/book-attachment/9rdQMdIWQda4Ze2zkHXhmg/mUYbTLC7Un05ekuU2G7cig
https://imperix.com/doc/help/getting-started-with-fpga-control-development#sbio-modules
https://imperix.com/doc/help/getting-started-with-fpga-control-development#sbio-modules
https://imperix.com/doc/help/getting-started-with-fpga-control-development#sbio-modules
https://imperix.com/doc/software/sandbox-input-from-fpga
https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project
https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication#vivado-project

Fig. 7 – usr_repo folder within the project directory.

In Vivado, once the project is ready, click on ‘Generate Bitstream’ to launch the

bitstream generation. The warning about the signal size mismatchs can be ignored.

How to assign a different SFP port

In the provided Vivado project, the SFP communication uses port SFP2 (DOWN 1). To

use SFP0 (UP) and/or SFP1 (DOWN 0) instead:

1. In the Vivado block design, double-click on the IX IP.

2. In the IX IP configuration panel, select options to reflect the desired

configuration, as depicted in Fig. 8. Click ‘OK’ to apply the changes. As

unconnected tx{p,n} and rx{p,n} IX IP ports could lead to Vivado warnings or

issues, note that only the required SFP port(s) must be checked.

3. Connect the tx{p,n} and rx{p,n} IX IP port to the corresponding ports of the

Aurora IP.

https://imperix.com/doc/wp-content/uploads/2024/11/image-12.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-12.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-14.png
https://imperix.com/doc/wp-content/uploads/2024/11/image-14.png

Fig. 8 – IX IP configuration panel with RealSync disabled on SFP0 (UP).

How to change the number of submodules

The RTDS MMC driver provided in the Vivado project is meant to be easily

extendable. It however requires minimal experience in FPGA design, typically with

Vivado and VHDL basics.

To increase the number of submodules per arm, e.g. to N=12, the following steps are

recommended:

Make sure that the modulator(s) in the controller can produce the Nx6 PWM

signals.

In the following VHDL files, set the N generic to the desired value:

RTDS_MMC.vhd, RTDS_rtds_firing_words.vhd, RTDS_emitter.vhd,

gen_complementary.vhd. The latter can be discarded if the modulator already

outputs the complementary signals.

Route the PWM signals generated by the modulator to the ‘pwm’ input of the

RTDS MMC driver.

If the capacitor voltages and submodule status must be accessed, the following

steps are recommended:

In RTDS_MMC.vhd, add the missing outputs to the RTDS MMC driver (typically,

add B_cap_v_sm_XX_leg_X and C_sm_XX_XX_leg_X outputs). Make sure that

they are connected to the right serial-to-parallel module.

In reg_32b_to_16b_66.vhd, extend the module inputs and outputs to match the

desired number.

If necessary, use an SBIO interconnect to instantiate up to 4 SBIO registers

blocks and therefore increase the number of available SBIO registers to 1024.

The sbio_interconnect.vhd is available in the hdl folder. Add it to the project

sources to be able to insert it in the design.

Do not forget to add the corresponding SBI blocks in the CPU model

accordingly.

Additional modifications in the reception mechanism (typ. in

RTDS_serial_to_parallel_{B,C}.vhd and RTDS_MMC_router.vhd) are required if the

targeted number of submodules exceeds 20.

Going further

As mentioned, this introduction to FPGA-based Aurora communication presents the

Aurora 8B/10B protocol and implements an Aurora 8B/10B loopback example.

The page high-level synthesis for FPGA developments shows how automated code

generation tools such as Model Composer and Vitis HLS can be used to facilitate the

development of FPGA modules. Like the Aurora 8B/10B IP, they use AXI4-Streams to

move data around.

The FPGA development on imperix controllers summarizes all the other FPGA-

related pages.

https://imperix.com/doc/help/example-of-fpga-based-aurora-8b-10b-communication
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

