
Graphical User Interface with MATLAB App Designer

PN130 | Posted on March 25, 2021 | Updated on August 4, 2025

Jessy ANÇAY

Sales & Project Engineer

•

Table of Contents

Software resource

Making a GUI with App Designer

Implementation principles in App Designer

Creating UI components

Share data within a GUI in App Designer

Defining callback functions

Timer implementation for background tasks

Closing comments

This note provides step-by-step guidance to implement a basic Graphical User Interface (GUI) with MATLAB app

designer. Throughout the page, a straightforward application is put together. It incorporates the main elements

required for a GUI such as UI components, callback functions, timers, and background tasks.

Basic concepts of App Designer are introduced here. It is also possible to use a GUI made with App Designer as an

OPC UA clients. Further details on the subject are found on the page: OPC UA client with the Industrial

Communication Toolbox. For a more concrete application example applied to a real Imperix converter, please refer to

the page Custom user interface to operate Imperix converters, which dives deeper into the practical aspects related

to the development of a GUI to remotely control the B-Box RCP prototyping controller.

Figure 1: Basic example of a GUI with App Designer

https://www.linkedin.com/in/jessy-ancay-a47615237/
https://imperix.com/doc/help/opc-ua-toolbox-for-matlab-and-simulink
https://imperix.com/doc/help/opc-ua-toolbox-for-matlab-and-simulink
https://imperix.com/doc/implementation/build-custom-user-interface
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/doc/wp-content/uploads/2022/06/image-6.png
https://imperix.com/doc/wp-content/uploads/2022/06/image-6.png

Software resource

The code of the application (MATLAB version R2022a or newer required) used as an example throughout this page

can be downloaded using the link below. This basic GUI simply plots three-phase sinusoidal voltage whose amplitude

and phase can respectively be adjusted using a slider and a text input.

Download ExampleApp.zip

Making a GUI with App Designer

Introduced in MATLAB version R2016a and part of the MATLAB basic package, App Designer allows to conveniently

design graphical user interfaces by dragging and dropping visual components. Actions and processes are meant to

be implemented in the well-known MATLAB programming language.

As mentioned, no add-ons or toolboxes are required. However, at a later stage, the MATLAB compiler add-on can be

used to share MATLAB programs as standalone applications. Applications can then be launched on any computer

using the free MATLAB Runtime libraries (a standalone set of shared libraries, MATLAB code, and other files that

enables the execution of MATLAB files on computers without an installed version of MATLAB).

MATLAB Help Center provides many tutorials on their App Designer product, e.g. Create and Run a Simple App Using

App Designer.

To introduce the main concepts, the example from Figure 1 will be recreated from scratch throughout this page. This

example plots three sinewaves whose amplitude and phase can be modified using a slider and an edit field,

respectively. Also, the GUI incorporates a lamp that changes color according to the amplitude of the sinewaves.

Implementation principles in App Designer

To start App Designer from MATLAB, type appdesigner in the Command Window or, starting in version R2019b, App

Designer can be opened by clicking the Design App button in the Apps tab.

Creating UI components

Upon opening a blank project in MATLAB App Designer, the first step is to add UI components. To recreate the

example from Figure 1:

Add the widgets: Axes, Edit Field (Numeric), Slider, and Lamp from the component library

Rename their labels to match the screenshot below

Note that App Designer will then automatically add these widgets to the Component Browser and name them

according to their labels.

At this point, the Design View should look similar to the screenshot from Figure 2.

https://cdn.imperix.com/doc/wp-content/uploads/2022/03/ExampleApp.zip
https://cdn.imperix.com/doc/wp-content/uploads/2022/03/ExampleApp.zip
https://www.mathworks.com/products/matlab/app-designer.html
https://ch.mathworks.com/products/compiler.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/help/matlab/creating_guis/create-a-simple-app-or-gui-using-app-designer.html
https://www.mathworks.com/help/matlab/creating_guis/create-a-simple-app-or-gui-using-app-designer.html

Figure 2: Preview of the GUI in App Designer

Share data within a GUI in App Designer

When designing a GUI with App Designer, it is often useful to be able to access variables from multiple callbacks or

functions. This can be done using properties as they are accessible from anywhere inside the application.

To declare properties proceed as follows:

Under the Code View, in the Editor tab, click on Property. The code to declare a property is automatically added.

Add the code below inside the properties section to declare the required variables for the example.

timer01;
amplitude = 0;
phase = 0;
x = 0:0.01:5*pi;Code language: Matlab (matlab)

Your code should look somewhat like the screenshot below.

The timer01 property will later be used to instantiate a timer while the three other properties are used to store the

sinewaves’ parameters. To then get or set a property in your code, use the dot notation: app.myProperty.

Defining callback functions

The next step is to add callbacks to the action widgets. Callbacks basically contain the code that will be executed

when the user interacts with the corresponding widget.

To do so:

Switch to the Code View in App Designer and, under the Editor tab, click on Callback. A pop-up window like the

one shown in Figure 3 should open.

In this pop-up window, select the AmplitudeSlider component and the ValueChangingFcn callback and click on

Add Callback. MATLAB App Designer will automatically add the corresponding callback function in the code.

Add the following code inside the newly created function to update the Axes UI scaling and the amplitude
property.

https://imperix.com/doc/wp-content/uploads/2022/06/image-1-1024x646.png
https://imperix.com/doc/wp-content/uploads/2022/06/image-1-1024x646.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-21.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-21.png

%Update the amplitude
app.UIAxes.XLim = [-0 5*pi];
app.UIAxes.YLim = [-350 350];
app.amplitude = event.Value; Code language: Matlab (matlab)

Figure3: Add callback functions to widgets

As done before, add a callback to the Phase EditField UI but this time select the ValueChangedFcn callback.

Enter the code below to the slider’s callback function to store the Phase EditField‘s value:

%Retrieves the phase value
app.phase = app.PhaseEditField.Value;Code language: Matlab (matlab)

Note that the components and their corresponding callback functions (seen in Figure 3) are automatically named by

App Designer according to the user-defined components’ label. The code for these two callbacks should look like the

screenshot below.

Timer implementation for background tasks

Implementing timers allows for performing background tasks that can be repeated periodically. It can be used to

update variables’ values or in this case to refresh the function plotted inside the Axes UI. The first step to implement

a timer is to create a startup function.

Timer declaration

Timers are usually declared in the startup function when developing a GUI in App Designer. A startup function is a

specific function that is executed when the application is first launched before the user can even interact with the

GUI. This is where the timer will be configured and started.

To do so:

Right-click on the app’s name (top node) in the Component Browser, hover Callbacks, and select Add

StartupFcn callback. The code for the startup function will be added to the Code View.

Add the code below inside the newly created function. It declares a timer with a period of 0.1 seconds, assigns

a callback function to it, and starts the timer.

%Instanciate timer
app.timer01 = timer('Period', 0.1,'ExecutionMode', ...
 'fixedSpacing', 'TasksToExecute', Inf);
app.timer01.TimerFcn = @app.TimerCallback;
start(app.timer01);Code language: Matlab (matlab)

https://imperix.com/doc/wp-content/uploads/2022/06/image-4.png
https://imperix.com/doc/wp-content/uploads/2022/06/image-4.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-19.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-19.png

Timer callback/background task definition

Timer callbacks are functions that are executed at a frequency defined by the timer’s period. In this specific case, the

timer callback can be seen as a background task, used to update the three sinewaves plotted in the Axes UI.

To define the timer callback, proceed as follows:

Under the Code View, in the Editor tab, click on Function

Replace the function code with the code below. This code plots three sinewaves, multiplied by the amplitude

defined by the Slider UI and phase shifted by the value entered in the EditField UI.

function TimerCallback(app, ~, ~)

 % Plot three sinewave functions
 plot(app.UIAxes, app.x, app.amplitude.*sin(app.x+mod(app.phase, 2*pi)), 'LineWidth',2);
 hold(app.UIAxes,'on');
 plot(app.UIAxes, app.x, app.amplitude.*sin(app.x+mod(app.phase, 2*pi) - 2*pi/3), 'LineWidth',2);
 plot(app.UIAxes, app.x, app.amplitude.*sin(app.x+mod(app.phase, 2*pi) + 2*pi/3), 'LineWidth',2);
 hold(app.UIAxes,'off');
 legend(app.UIAxes, 'Va', 'Vb', 'Vc');
 grid(app.UIAxes, 'on');

 %Change lamp colors
 if app.amplitude < 325/3
 app.HighvoltageWarningLamp.Color = 'green';
 elseif app.amplitude > 325/3 && app.amplitude < 2*325/3
 app.HighvoltageWarningLamp.Color = 'yellow';
 else
 app.HighvoltageWarningLamp.Color = 'red';
 end
endCode language: Matlab (matlab)

Timer shutdown

https://imperix.com/doc/wp-content/uploads/2022/07/image-23.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-23.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-28.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-28.png

Finally, timers need to be stopped when closing the application. Similar to the startup function, the

UIFigureCloseRequest function is called when the application is closed and can therefore be used to stop timers.

To do so:

Right click on the UI Figure (second node) in the Component Browser, hover Callbacks, and select Add

UIFigureCloseRequest callback. The function’s code will be added to the Code View.

Add the code below inside the newly created function. It stops and deletes the timer used for the background

task.

%Stop timer
stop(app.timer01);
delete(app.timer01);Code language: C++ (cpp)

Closing comments

Implementing a GUI with App Designer is a rather quick and easy task since it requires little knowledge of

programming. Besides, this relies on the well-known MATLAB environment that ACG SDK users are often already

familiar with. It is however important to keep in mind that one of the main drawbacks of this approach is the

performance because it relies on executing an interpreted MATLAB code, which is a CPU-intensive task on the PC.

Finally, it can be attractive to use GUIs to easily interact with power converters. It can, as further discussed on the

page Custom user interface to operate Imperix converters, greatly simplify the operation of more complex

converters.

https://imperix.com/doc/wp-content/uploads/2022/07/image-29.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-29.png
https://imperix.com/software
https://imperix.com/doc/implementation/build-custom-user-interface

