
Simulation essentials with Simulink

PN135 | Posted on March 23, 2021 | Updated on August 8, 2025

Julien ORSINGER

Power Applications Specialist

•

Table of Contents

Related content

Fundamental concepts

Working principle of the main blocks

Configuration block and its clocks

ADC

PWM

Mastering the sample times

Verifying the sample times

Altering the sample times

Further readings

This note provides in-depth content for an accurate and efficient offline simulation of an imperix

controller and the corresponding plant model using ACG SDK on Simulink.

Related content

Suggested prerequisites

Installation guide for ACG SDK

Getting started with Simulink

Suggested further readings

Programming and operating imperix controllers

Cockpit user guide

Speeding up Simulink simulation

https://www.linkedin.com/in/julien-orsinger-640ab2129/
https://imperix.com/software/acg-sdk/
https://imperix.com/doc/help/installation-guide-acg-sdk
https://imperix.com/doc/help/getting-started-acg-sdk-simulink
https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/help/going-further-with-acg-sdk/speeding-up-simulink-simulation


Getting started with imperix ACG SDK on Simulink [Part 2]Getting started with imperix ACG SDK on Simulink [Part 2]

Fundamental concepts

The offline simulation is meant to faithfully reproduce the behavior of the overall system (controller

and plant). To that end, the imperix blockset for Simulink was designed with the following guidelines

in mind:

The plant quantities are to be modeled with continuous signals

This calls for using a variable-step solver

The control algorithm is modeled with discrete signals, sampled at a rate equal to the interrupt

frequency of the physical controller, and with a phase corresponding to the corresponding

sampling phase.

This requires a discretized algorithm (in   domain)

This is modeled accurately with the variable-step solver, as it is forced to take a major

step at each execution of the interrupt

The behavior of the real PWM generators is modeled, in particular:

The frequency and phase of the carrier

The instants when the duty-cycle and phase parameters are updated (at zero and/or max

of the carrier)

The duration of the algorithm execution is modeled

z

https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN135_2023.png
https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN135_2023.png
https://www.youtube.com/watch?v=HklMDtAADUU


This induces a delay between the start of the interruption and the availability of the new

data

With all the phases and delays modeled accurately, the simulated controller has the same dynamics

as the real controller, which allows tuning the control parameters during the offline simulation.

The imperix blockset is already implemented such that these guidelines are automatically observed.

As such, no particular action is required from the user.

Working principle of the main blocks

The three fundamental blocks are the Config, ADC, and PWM blocks. Most applications can work

with only those three, as in the standard configuration shown below:

Typical content of the controller model

Configuration block and its clocks

The Config block configures the main global parameters of the model, such as:

The model execution purpose (offline simulation or code generation for a real-time target)

The configuration of the default clock CLOCK_0, which is always used for sampling the

triggering of the control interrupt.

Other advanced configuration parameters.

To configure and implement CLOCK_0, the Config block contains a CLK block. A clock is a time base

serving as a time reference for different peripherals that are connected to it.

In simulation, the Clock block outputs a sawtooth signal with the clock period   and a

phase of zero. Then, this clock signal is passed through a subsystem that generates a sampling

clock, with a relative phase-shift of   and a period defined by:

The Config block also sets the value of the sample time variable CTRLPERIOD. This variable can be

used in any block requiring a sample time (e.g. discrete transfer functions):

The fundamental elements of the Configuration block are mapped below, with the waveform of the

generated signals.

Tclk0 = 1/fclk0

ϕs

Ts = {Tclk0 if postscaler = 0

2 ⋅ postscaler ⋅ Tclk0 otherwise

CTRLPERIOD = [Ts, ϕsTs]

https://imperix.com/doc/wp-content/uploads/2021/03/usual_configuration_3_blocks-1024x285.png
https://imperix.com/doc/wp-content/uploads/2021/03/usual_configuration_3_blocks-1024x285.png
https://imperix.com/doc/software/clock-generators


ADC

The ADC block allows retrieving the sampled value of a given ADC channel and converts it to its

value in physical unit.

The simulation model simply sample-and-holds the input signal (2) with the rising edges of the

sampling clock (1). The input signal is typically a continuous signal coming from the plant model

and representing a measurement value. The sample time of the output signal (3) is set to

CTRLPERIOD in order to be automatically propagated to other connected blocks.

https://imperix.com/doc/wp-content/uploads/2021/03/image-9-1024x498.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-9-1024x498.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-10-1024x586.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-10-1024x586.png


PWM

Various types of pulse-width modulators exist within the imperix blockset. Among them, the carrier-

based PWM modulator (CB PWM block) is probably the default and most generic one. It configures

the corresponding FPGA peripheral and generates the PWM signals according to the duty-cycle and

phase parameters.

In the simulation model, the clock signal (1) connected to the clock input is used as a time reference

to generate the carrier signal (2). In parallel, the duty-cycle value (3) is sampled (once or twice per

switching period depending on the update-rate parameter) and compared to the carrier to produce

the output PWM signal (5). (A more complex model is used to generate a carrier with a variable

phase, which is beyond the scope of this document.)

https://imperix.com/doc/wp-content/uploads/2021/03/image-13-1024x470.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-13-1024x470.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-14-1024x535.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-14-1024x535.png


Mastering the sample times

Mastering the sample time (essentially the execution rate) of each block is key for an accurate and

efficient simulation of discrete control algorithms in Simulink, as well as the generation of proper

run-time code. In particular, the execution rates must comply with the fundamental concepts listed

above and be clearly identified by the Simulink Coder engine, namely:

The plant (i.e. physical) signals are represented by continuous signals

The control signals (i.e. those computed during the controller main interrupt) are represented

by discrete signals with a sampling rate and phase corresponding to the configuration of the

main interrupt. Their sample time is, therefore, the vector CTRLPERIOD.

The blocks of the imperix blockset are built in such a way that they comply with these concepts. The

user is only recommended to make sure that his/her control implementation is executed at the

https://imperix.com/doc/wp-content/uploads/2021/03/image-11-1024x486.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-11-1024x486.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-12-1024x869.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-12-1024x869.png


proper rate. In some situations, the CTRLPERIOD may not be propagated automatically to the whole

control model (see the example of the step block below).

Verifying the sample times

In Simulink, the sample time of each signal can be conveniently displayed by choosing Display >

Sample Time > Colors. The color legend can be displayed by pressing Ctrl+J (see below)

Sample time color legend

In Simulink, the sample time of “continuous” signals (as opposed to discrete signals with a fixed

period) can either be Continuous or Fixed in Minor Step. The latter is essentially an optimized

version of “continuous,” applicable when the value of the signal cannot change between the major

steps of the solver. For instance, the PWM signals do not vary between the switching instants. They

can be considered as “semi-continuous” signals. For further reading, see

https://mathworks.com/help/simulink/ug/types-of-sample-time.html.

With the colors defined above, a typical control implementation should look like this:

https://imperix.com/doc/wp-content/uploads/2021/03/image-15.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-15.png
https://mathworks.com/help/simulink/ug/types-of-sample-time.html
https://imperix.com/doc/wp-content/uploads/2021/03/image-16-1024x603.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-16-1024x603.png


Typical sample times of a simulation model

As the ADC and PWM blocks serve as an interface between the continuous plant signals and the

discretized control, they contain blocks with different sample times and have thus a Hybrid sample

time.

Altering the sample times

In most cases, inherited sample time (-1) ensures that the whole discretized control is executed at

the proper rate. The illustration below shows a discrete PI controller whose sample time is -1 and

the sample time is correctly propagated from outside the system:

In some cases, a certain block can enforce a wrong sample time, as in the example below, where the

step block is continuous (its default sample time) and propagates the wrong sample time to the PI

controller (in this case, this even results in an error, since the discrete PI cannot run at a continuous

sample time):

To solve this, there are basically two options to force the sample time of a particular signal or block.

1) Set the sample time of the “faulty” block or the discrete block to CTRLPERIOD:

https://imperix.com/doc/wp-content/uploads/2021/03/image-17.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-17.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-18.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-18.png


Step block parameters

2) If the faulty block cannot be found or its sample time cannot be specified, use a Signal

specification block with CTRLPERIOD as sample time

Further readings

https://imperix.com/doc/wp-content/uploads/2021/03/image-19.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-19.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-20.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-21-1024x368.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-21-1024x368.png


Programming and operating imperix controllers (PN138)

Cockpit user guide (PN300)

Speeding up simulation with Simulink (PN131)

https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/help/going-further-with-acg-sdk/speeding-up-simulink-simulation

