
Getting started with ACG SDK on PLECS

PN136 | Posted on February 15, 2024 | Updated on August 8, 2025

Stéphane LOVEJOY

Senior Software Developer

•

Table of Contents

Related material

Prerequisites

First model

Plant model subsystem

Closed-loop control subsystem

Simulation

Code generation for an imperix controller target

Detailed configuration of an imperix model

Further readings

This note gives the instructions to efficiently get started with the imperix ACG SDK

on PLECS.

Related material

Suggested prerequisites

Installation guide for ACG SDK

Suggested further readings

Simulation essentials with PLECS

Programming and operating imperix controllers

Cockpit user guide

https://www.linkedin.com/in/st%C3%A9phane-lovejoy-40721794/
https://imperix.com/doc/help/installation-guide-acg-sdk
https://imperix.com/doc/help/simulation-essentials-plecs
https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide

Prerequisites

Before starting, the following two steps must have been performed. They are

described in Installation guide for ACG SDK (PN133)

The imperix ACG SDK must be installed

The imperix library must have been added to the target support packages path

of PLECS coder. The imperix library is located in the Imperix_Controllers target

support package contained within the ACG SDK installation. The default

location is C:\imperix\BB3_ACG_SDK\plecs.

When using multiple target support packages, PLECS requires that they are placed in

the same folder. Therefore, the Imperix_Controllers support package can be copied

to any location on your computer.

First model

The best way to begin working with PLECS is to start from the template model. The

default template model contains all basic configurations to start working right away.

The default template model can be found at: C:\imperix\BB3_ACG_SDK\plecs

The model is separated into two subsystems, the plant model and the closed-loop

control as shown below:

https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN136_2023-1.png
https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN136_2023-1.png
https://imperix.com/doc/help/installation-guide-acg-sdk

Controller and plant model blocks

Plant_Model: contains the model of the system to be controlled. This is

typically the model of the power system itself (e.g. converter, sources, grid,

machine, sensors,…).

Closed_loop_control: contains the control implementation that can be

simulated or used to generate the control code for the imperix controller (B-Box

RCP, B-Box Micro, or B-Board PRO).

Plant model subsystem

In order to run the control algorithm in simulation, PLECS needs a model of the real

converter hardware (system to be controlled). This model should be located inside

the Plant_Model subsystem of the root view of your PLECS model.

The plant model is usually only considered during offline simulation. Indeed, code for

an imperix controller cannot be generated from the plant model. A PLECS RT Box

target can be used to perform HIL emulation of the plant model.

Coming soon! The new Imperix Power library. This library offers simulation models

for a wide range of imperix power modules.

Closed-loop control subsystem

Imperix control library

The control implementation can be done using the blocks provided in the Imperix

Control Library and most PLECS blocks from the PLECS standard libraries.

https://imperix.com/doc/wp-content/uploads/2021/03/image-3-1024x526.jpeg
https://imperix.com/doc/wp-content/uploads/2021/03/image-3-1024x526.jpeg

The Imperix Control library can be found in the library browser (Window > Library

Browser or by pressing [CTRL+L] and browsing to Imperix Control).

The Imperix Control library shown on the right essentially implements hardware-

related mechanisms that are associated with analog and digital I/Os. The library also

contains blocks for real-time monitoring and to control the state of an imperix

controller.

imperix library for PLECS

Basic control example

For the sake of example, a basic control algorithm of a buck converter is shown

below. It sets the output voltage to 12V, regardless of the measured input voltage.

https://imperix.com/doc/wp-content/uploads/2021/03/image-22-574x1024.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-22-574x1024.png

Buck converter control example

Note that the ADC input Vin and the CB_PWM PWM output are automatically added to

the Closed_Loop_Control subsystem inputs/outputs. They should be connected to

the Plant_Model subsystem for simulation purposes, as shown in the screenshot

below.

Controller and plant model blocks

This basic control scheme contains:

A CONFIG block to define the main interrupt frequency and ADC sampling

phase shift and postscaler

A Control Task Trigger block used to set the atomic subsystem’s discretization

step size

An ADC block to retrieve the simulated DC bus voltage in simulation, and the

analog input on channel 0 of the imperix controller in code generation

A Tunable Parameter block to define a variable Vout_ref that is accessible

and modifiable in real-time from the Cockpit software

A Probe block to define a variable duty_cycle that can be logged in real-time

from the Cockpit software

A Carrier-based PWM (CB_PWM) modulator to generate PWM signals with a

duty-cycle D. The PWM signals are wired to the plant model in simulation and

directly output on the PWM outputs of the imperix controller in code generation

Simulation

https://imperix.com/doc/wp-content/uploads/2021/03/image-23-1024x407.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-23-1024x407.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-24.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-24.png
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/help/cockpit-user-guide

The Plant_Model subsystem is simulated using the solver parameters specified in

Simulation > Simulation Parameters… > Solver.

For the Closed_Loop_Control subsystem, the values going through the ADC blocks

are sampled with the sampling clock provided by the CONFIG block.

The whole control algorithm is executed at the main interrupt rate, defined by the

variable f_clk0. This variable can be configured in Simulation > Simulation

Parameters… > Initialization.

See the section “Main interrupt frequency and discretization step size” below to learn

how f_clk0 variable is tied to the main interrupt frequency and the discretization

step size.

The simulation can easily be started by pressing on [CTRL+T]

Code generation for an imperix controller target

To generate code for an imperix controller from the Closed_Loop_Control substem,

press on [CTRL+Alt+B] or click on Coder > Coder Options to open the Coder Options

window.

If you started from the default template model everything will be configured as

showed below.

To launch the code generation process simply press the build button. It will generate

the CPU code, and Cockpit will be automatically launched. Cockpit will then load the

code onto the target (B-Box RCP, B-Box Micro, or B-Board PRO). More information on

Cockpit is available on Programming and operating imperix controllers (PN138).

https://imperix.com/doc/help/programming-imperix-controllers

General coder options

https://imperix.com/doc/wp-content/uploads/2021/03/image-25.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-25.png

Target-specific options

Detailed configuration of an imperix model

This chapter contains a step by step explanation of how the default template model

or example models are created and configured to properly work with an imperix

controller.

Subsystem creation

To create a Closed-loop control subsystem or a Plant model subsystem starting

from a blank model, simply follow the next few steps:

1. Press [CTRL+L] to display the Library Browser. Type subsystem in the search bar to

quickly find the component

https://imperix.com/doc/wp-content/uploads/2021/03/image-26.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-26.png

2. Drag and drop the subsystem block to your model

3. Rename the subsystem to Closed_loop_control or Plant_Model by double-clicking

on the subsystem block name

https://imperix.com/doc/wp-content/uploads/2021/03/image-27.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-27.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-28.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-28.png

4. Open the subsystem and remove the preexistent Signal Inport and Outport.

Replace it with the desired blocks.

Main interrupt frequency and discretization step

size

A key aspect of simulation and code generation is the discretization step size. It

specifies the base sample time of the generated code and is used to discretize the

continuous control algorithms developed by the user. If the control is already

discretized, it sets the sample time of the discretized blocks. The blocks from the

Imperix Control library, on the other hand, must be discretized at main interrupt

frequency.

For the system to work properly, the discretization step size must correspond to the

main interrupt frequency defined in CONFIG block.

To ensure that the discretization step size matches the main interrupt frequency,

proceed as follows:

1. Add a CONFIG block and set the Clock frequency parameter to f_clk0. This

will set the main interrupt frequency.

https://imperix.com/doc/wp-content/uploads/2021/03/image-29.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-29.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-30.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-30.png

2. Add the Control Task Trigger block and set Nominal base sample time to

1/f_clk0. It will set the discretization step size.

3. Define the variable f_clk0 and set it to the desired sampling frequency (in this

case 20 kHz). It can be achieved by clicking on Simulation > Simulation

parameters > Initialization and add the following line in the Model initialization

commands box: f_clk0 = 20e3;
4. Make the Closed-loop control subsystem atomic to ensure the same sample

time throughout the control. Right-click on the Closed_loop_control subsystem,

click on Execution Settings and tick the Treat as atomic unit checkbox.

Setting up the model for code generation

Enabling code generation

The first step is to enable code generation for the Closed_loop_control subsystem.

To achieve it, simply right-click on the Closed_loop_control subsystem, click on

Subsystem > Execution Settings…, and tick the Enable code generation checkbox. If

the discretization step size was previously set up (as explained in the section above),

the Discretization step size parameter should already be configured to 1/f_clk0.

Enabling code generation

Target Configuration

The last step is to set the Target used for code generation.

It can be done by clicking on Coder > Coder Options. Be sure to select the

Closed_loop_control system.

In the General tab, make a quick check to ensure that the Discretization step size is

set to the desired value of 1/f_clk0.

https://imperix.com/doc/wp-content/uploads/2021/03/image-31.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-31.png

General coder options

Finally, in the Target tab, select Imperix Controllers target.

https://imperix.com/doc/wp-content/uploads/2021/03/image-32.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-32.png

Traget-specific options

Everything is now set and ready to generate C++ code.

Further readings

Simulation essentials with PLECS (PN137)

Programming and operating imperix controllers (PN138)

Cockpit – User guide (PN300)

https://imperix.com/doc/wp-content/uploads/2021/03/image-33.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-33.png
https://imperix.com/doc/help/simulation-essentials-plecs
https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide

