Getting started with ACG SDK on PLECS

PN136 | Posted on February 15,2024 | Updated on August 8, 2025

Stéphane LOVEJOY
Senior Software Developer

imperix . in

Table of Contents

e Related material
e Prerequisites
e First model

e Plant model subsystem

e Closed-loop control subsystem

e Simulation

e Code generation for an imperix controller target
e Detailed configuration of an imperix model

e Further readings

This note gives the instructions to efficiently get started with the imperix ACG SDK
on PLECS.

Related material

Suggested prerequisites

¢ |nstallation guide for ACG SDK

Suggested further readings

e Simulation essentials with PLECS
e Programming_and operating_ imperix controllers
e Cockpit user guide

https://www.linkedin.com/in/st%C3%A9phane-lovejoy-40721794/
https://imperix.com/doc/help/installation-guide-acg-sdk
https://imperix.com/doc/help/simulation-essentials-plecs
https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide

Installation

[guide]
Get started PN133 Get started
Simulink PLECS
PN134 PN136
Simulation Simulation
Simulink PLECS
|_,. controllers ,._|
PMN138

Prerequisites

Before starting, the following two steps must have been performed. They are
described in Installation guide for ACG SDK (PN133)

e The imperix ACG SDK must be installed

e The imperix library must have been added to the target support packages path
of PLECS coder. The imperix library is located in the Imperix_Controllers target
support package contained within the ACG SDK installation. The default
location is C:\imperix\BB3_ACG_SDK\plecs.

When using multiple target support packages, PLECS requires that they are placed in
the same folder. Therefore, the Imperix_Controllers support package can be copied
to any location on your computer.

First model

The best way to begin working with PLECS is to start from the template model. The
default template model contains all basic configurations to start working right away.

The default template model can be found at: C: \imperix\BB3_ACG_SDK\plecs

The model is separated into two subsystems, the plant model and the closed-loop
control as shown below:

https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN136_2023-1.png
https://imperix.com/doc/wp-content/uploads/2023/03/page_hierarchy-PN136_2023-1.png
https://imperix.com/doc/help/installation-guide-acg-sdk

] Control Task Trigger
o
PWM |——-
ADC [—====y

CONFIG
Configuration

Y

Lel Closed_loop_control |- —»] Plant_Model ‘

\ [

S| Elemel]

| 1 3 A X 2 z
:‘-\N:g-,-:qz!lvr:i\i i

Controller and plant model blocks

¢ Plant_Model: contains the model of the system to be controlled. This is
typically the model of the power system itself (e.g. converter, sources, grid,
machine, sensors,...).

¢ Closed_loop_control: contains the control implementation that can be
simulated or used to generate the control code for the imperix controller (B-Box
RCP, B-Box Micro, or B-Board PRO).

Plant model subsystem

In order to run the control algorithm in simulation, PLECS needs a model of the real
converter hardware (system to be controlled). This model should be located inside
the Plant_Model subsystem of the root view of your PLECS model.

The plant model is usually only considered during offline simulation. Indeed, code for
an imperix controller cannot be generated from the plant model. A PLECS RT Box
target can be used to perform HIL emulation of the plant model.

Coming soon! The new Imperix Power library. This library offers simulation models
for a wide range of imperix power modules.

Closed-loop control subsystem

Imperix control library

The control implementation can be done using the blocks provided in the Imperix
Control Library and most PLECS blocks from the PLECS standard libraries.

https://imperix.com/doc/wp-content/uploads/2021/03/image-3-1024x526.jpeg
https://imperix.com/doc/wp-content/uploads/2021/03/image-3-1024x526.jpeg

The Imperix Control library can be found in the library browser (Window > Library
Browser or by pressing [CTRL+L] and browsing to Imperix Control).

The Imperix Control library shown on the right essentially implements hardware-
related mechanisms that are associated with analog and digital I/0s. The library also
contains blocks for real-time monitoring and to control the state of an imperix

controller.
Configuration
20.0 kHz Control Task Trigger
PWHM

CIK 1

CLK

I/Os
BBO BBO BBO BBO

CHO b GPID reg 0:2 MO 1
ADC GPIL SBI DEC
BBO BBO BBO BBO
AOO GPOO reg 0:2 FLTO
DAC GPO SBO FLT
Modulators
BBO BBO BBO
D OH - OH OH
oL oL oL
CB_PWM DO_PWM SV_PWM SB PWM
Communication
upP uppP Address Address
2000 2000 0 0
ETH_out ETH_in CAN_out CAN_in

State and variables

D probe_name Coe ghy Enable BBO
- state npy 19 outputs 17 led: green

param_rame Core state Enable outputs LED

ACG SDK (PLECS) 3.5.0.0
© 2020 imperix Ltd, Switzerland

imperix library for PLECS

Basic control example

For the sake of example, a basic control algorithm of a buck converter is shown
below. It sets the output voltage to 12V, regardless of the measured input voltage.

https://imperix.com/doc/wp-content/uploads/2021/03/image-22-574x1024.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-22-574x1024.png

Control Task Trigger
———
-
i *DD duty_cycle
I
Configuration | BBO
! BBO
| CHO =
L — g
Vin Divide | ______

PWM
12 | |
Vout_ref

Buck converter control example

Note that the ADC input Vin and the CB_PWM PWM output are automatically added to
the Closed_Loop_Control subsystem inputs/outputs. They should be connected to
the Plant_Model subsystem for simulation purposes, as shown in the screenshot
below.

Vin PWM Pl Gate Vmeas

Closed_loop_control Plant_Model

Controller and plant model blocks
This basic control scheme contains:

e A CONFIG block to define the main interrupt frequency and ADC sampling
phase shift and postscaler

¢ A Control Task Trigger block used to set the atomic subsystem’s discretization
step size

e An ADC block to retrieve the simulated DC bus voltage in simulation, and the
analog input on channel 0 of the imperix controller in code generation

¢ A Tunable Parameter block to define a variable Vout_ref that is accessible
and modifiable in real-time from the Cockpit software

e A Probe block to define a variable duty_cycle that can be logged in real-time
from the Cockpit software

e A Carrier-based PWM (CB_PWM) modulator to generate PWM signals with a
duty-cycle D. The PWM signals are wired to the plant model in simulation and

directly output on the PWM outputs of the imperix controller in code generation

Simulation

https://imperix.com/doc/wp-content/uploads/2021/03/image-23-1024x407.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-23-1024x407.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-24.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-24.png
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/help/cockpit-user-guide

The Plant_Model subsystem is simulated using the solver parameters specified in
Simulation > Simulation Parameters... > Solver.

For the Closed_Loop_Control subsystem, the values going through the ADC blocks
are sampled with the sampling clock provided by the CONFIG block.

The whole control algorithm is executed at the main interrupt rate, defined by the
variable f_clke. This variable can be configured in Simulation > Simulation
Parameters... > Initialization.

See the section “Main interrupt frequency and discretization step size”below to learn
how f_clke variable is tied to the main interrupt frequency and the discretization
step size.

The simulation can easily be started by pressing on [CTRL+T]

Code generation for an imperix controller target

To generate code for an imperix controller from the Closed_Loop_Control substem,
press on [CTRL+AIt+B] or click on Coder > Coder Options to open the Coder Options
window.

If you started from the default template model everything will be configured as
showed below.

To launch the code generation process simply press the build button. It will generate
the CPU code, and Cockpit will be automatically launched. Cockpit will then load the
code onto the target (B-Box RCP, B-Box Micro, or B-Board PRO). More information on
Cockpit is available on Programming_and operating_imperix controllers (PN138).

https://imperix.com/doc/help/programming-imperix-controllers

) Coder Options: my_model

System

my_rmodel
Closed_loop_control
Plant_Model

General Parameter Inlining Target

General

Scheduling i M

Discretization step size: |1,.’f_|:|kl]

Discretization method: | Radau

v
Floating point format: | double w
Diagnostics

IUsage of absolute time: error w
QOutput options

Base name: |CIn:-sed_ln:-n:-p_n:n:-l'ltrn:-l |

Output directory: |m'-;_mu:-u:|e|_u:u:-u:|egen

Accept Revert Close

Help

General coder options

https://imperix.com/doc/wp-content/uploads/2021/03/image-25.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-25.png

) Coder Options: my_model *

System General Parameter Inlining Target Scheduling L

my_rmodel
Closed_loop_control
Plant_Model Inter-device communication

Target: Imperix Controllers L | i

CAN baud rate (bit/s): 1000000

Accept Revert Close Help

Target-specific options

Detailed configuration of an imperix model

This chapter contains a step by step explanation of how the default template model
or example models are created and configured to properly work with an imperix
controller.

Subsystem creation

To create a Closed-loop control subsystem or a Plant model subsystem starting
from a blank model, simply follow the next few steps:

1. Press [CTRL+L] to display the Library Browser. Type subsystem in the search bar to
quickly find the component

https://imperix.com/doc/wp-content/uploads/2021/03/image-26.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-26.png

) Library Browser — O ot

File Window Help
L subsystem Q

~ System

[l Quilf Sybsystem

Il Gutl) Sybsystem [Configurable)

Il Quitl Atomic Subsystem

x
i Gutll Triggered Subsystem

I
Ini - Qutll Enabled Subsystem

N
Il Sutll Enabled and Triggered Subsystem

Subsystem

Inl Curl

Represent a system within a
system.

2. Drag and drop the subsystem block to your model

B my_model — O *

File Edit View Simulation Format Coder Window Help

Inl Cutlf

Subsystem

3. Rename the subsystem to Closed_loop_control or Plant_Model by double-clicking
on the subsystem block name

https://imperix.com/doc/wp-content/uploads/2021/03/image-27.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-27.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-28.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-28.png

B my_model — O *

File Edit View Simulation Format Coder Window Help

Inl Cutlf

Closed_loop_control

4. Open the subsystem and remove the preexistent Signal Inport and Outport.
Replace it with the desired blocks.

Bl my_mode — O * B my_model/Closed_loop_contro — m}

Control Task Trigger

0

=Rl
Eh

O=&

|
Vin P [Configuration |
|

Closed_loop_control
Divide

Main interrupt frequency and discretization step
size

A key aspect of simulation and code generation is the discretization step size. It
specifies the base sample time of the generated code and is used to discretize the
continuous control algorithms developed by the user. If the control is already
discretized, it sets the sample time of the discretized blocks. The blocks from the
Imperix Control library, on the other hand, must be discretized at main interrupt
frequency.

For the system to work properly, the discretization step size must correspond to the
main interrupt frequency defined in CONFIG block.

To ensure that the discretization step size matches the main interrupt frequency,
proceed as follows:

1. Add a CONFIG block and set the Clock frequency parameter to f_c1ke. This
will set the main interrupt frequency.

https://imperix.com/doc/wp-content/uploads/2021/03/image-29.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-29.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-30.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-30.png

2. Add the Control Task Trigger block and set Nominal base sample time to
1/f_clke. It will set the discretization step size.

3. Define the variable f_c1ke and set it to the desired sampling frequency (in this
case 20 kHz). It can be achieved by clicking on Simulation > Simulation
parameters > Initialization and add the following line in the Model initialization
commands box: f clke = 20e3;

4. Make the Closed-loop control subsystem atomic to ensure the same sample
time throughout the control. Right-click on the Closed_loop_control subsystem,
click on Execution Settings and tick the Treat as atomic unit checkbox.

Setting up the model for code generation

Enabling code generation

The first step is to enable code generation for the Closed_loop_control subsystem.
To achieve it, simply right-click on the Closed_loop_control subsystem, click on
Subsystem > Execution Settings..., and tick the Enable code generation checkbox. If
the discretization step size was previously set up (as explained in the section above),
the Discretization step size parameter should already be configured to 1/f c1ke.

E) Execution Settings: my_model/Closed_loop_contral X
Execution Settings
finimize ocowrrence of algebraic loops
Sample time:
[autal
Code Generation
Enable code generation Qpen goder options
Digcretization step size: 1f_dkd |
Simulation mode: Mormal -
[][cancel || osly el

Enabling code generation

Target Configuration

The last step is to set the Target used for code generation.

It can be done by clicking on Coder > Coder Options. Be sure to select the
Closed_loop_control system.

In the General tab, make a quick check to ensure that the Discretization step size is
set to the desired value of 1/f c1ke.

https://imperix.com/doc/wp-content/uploads/2021/03/image-31.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-31.png

) Coder Options: my_model *

System General Parameter Inlining Target Scheduling i M
my_rmodel General
Closed_loop_control
Plant_Model Discretization step size: |1,.’f_|:|kl]
Dizcretization method: | Radau w
Floating point format: | double w
Diagnostics
IUsage of absolute time: error w
QOutput options
Base name: |CIn:-sed_ln:-n:-p_n:n:-l'ltrn:-l |

Output directory: |m'-;_mu:-u:|e|_u:u:-u:|egen |

Accept Revert Close Help

General coder options

Finally, in the Target tab, select Imperix Controllers target.

https://imperix.com/doc/wp-content/uploads/2021/03/image-32.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-32.png

) Coder Options: my_model

System

my_rmodel
Closed_loop_control
Plant_Model

General Parameter Inlining Target

Scheduling L

Target: Imperix Cantrallers

P

i | |

Inter-device communication

CAN baud rate (bit/s): 1000000

Accept Revert Close

Help

Traget-specific options

Everything is now set and ready to generate C++ code.

Further readings

e Simulation essentials with PLECS (PN137)

e Programming_and operating_imperix controllers (PN138),

e Cockpit — User guide (PN300)

https://imperix.com/doc/wp-content/uploads/2021/03/image-33.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-33.png
https://imperix.com/doc/help/simulation-essentials-plecs
https://imperix.com/doc/help/programming-imperix-controllers
https://imperix.com/doc/help/cockpit-user-guide

