
Integration of C code in Simulink via S-Functions

PN153 | Posted on March 25, 2021 | Updated on May 7, 2025

Julien ORSINGER

Power Applications Specialist

•

François LEDENT

Development Engineer

•

Table of Contents

Creating an S-function

Good to know about S-Functions

Auxiliary functions

Arrays as arguments

Path issues with the .mat file

Reuse the S-Function

Example

C code on PLECS

This note provides instructions for integrating C code into a control algorithm

developed using the ACG SDK via S-Functions, which is probably the best way to

include C code into a Simulink model.

With S-Functions, users can create a custom Simulink block, whose behavior is

defined by code (C, C++, Fortran or MATLAB), and thus implement advanced

algorithms that would be complex to develop with the graphical approach. However,

S-Functions have specificities that are good to have in mind, several are discussed in

this article.

The integration of C code in PLECS is straightforward and thus briefly discussed at

the end.

Creating an S-function

Simulink provides an S-function Builder block that generates the necessary files and

helps define the inputs, outputs and parameters of the S-function.

https://www.linkedin.com/in/julien-orsinger-640ab2129/
https://www.linkedin.com/in/francois-ledent/
https://mathworks.com/help/simulink/sfg/what-is-an-s-function.html
https://mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html

The inputs, outputs and parameters can be defined in the Data Properties tab:

S-function builder input/output configuration

Then, your C code can be written in the Outputs tab.

S-function builder output code

https://imperix.com/doc/wp-content/uploads/2021/03/image-112.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-112.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-113.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-113.png

Finally, the following build options can be configured in the Build Info tab:

S-function build options

When finished, the Build button on the top right corner generates the necessary files.

These include:

name.cpp

Is the S-function files that define the function

inputs, outputs and parameters and call the

wrapper function.

name_wrapper.cpp

Is a function that contains the user-written code of

the S-function. This file is the only file compiled by

the imperix toolchain in code generation.

name.tlc
Is an interface defining how the code should be

called by Simulink Coder.

name.mexw64 Is the compiled version of the S-function.

Make sure that MATLAB is in the same folder as your model when you click the Build

button. This ensures that the generated files will have the same path as your model

and that the compiler will be able to find them when generating code for the whole

model.

A MEX compiler is required to use S-functions. If none is installed, please follow the

instructions of the section “Mex compiler add-on” from Installation guide for imperix

ACG SDK (PN133).

https://imperix.com/doc/wp-content/uploads/2021/03/image-114.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-114.png
https://imperix.com/doc/help/installation-guide-acg-sdk
https://imperix.com/doc/help/installation-guide-acg-sdk

Good to know about S-Functions

Auxiliary functions

Auxiliary functions can be placed in the Includes input box, along with any

potential define directives (as shown with the simulate_state function in the figure

below).

S-Functions : auxiliary functions via the Includes input box

Arrays as arguments

The S-function supports arrays as arguments. However, arrays of dimension higher

than 1 are flattened and must be resized in the C script to recover the desired shape,

as in the following example :

https://imperix.com/doc/wp-content/uploads/2024/03/PN153_s-function_auxiliary_functions_red.png
https://imperix.com/doc/wp-content/uploads/2024/03/PN153_s-function_auxiliary_functions_red.png

Reshaped array arguments in a S-Function

Note that Matlab is based on the column-major ordering. That means that arrays are

transposed compared to the row-major ordering usually used in C, C++ and Python,

for example. This explains the position of the terms […]_ptr[1] and […]_ptr[2] in the

figure above.

Path issues with the .mat file

Path issues can occur when the project is located after the build of the S-function.

Those issues can be avoided by removing the SFB__[s-function name]__SFB.mat file

before transferring the project folder. Removing the .mat file does not affect the

simulation or the code generation of the model.

Reuse the S-Function

The S-Function Builder block also serves as a wrapper for the generated S-function,

which means that it can be used inside a model as any other Simulink block.

Alternatively, an S-function block can be used to integrate the generated files into a

Simulink model.

https://imperix.com/doc/wp-content/uploads/2024/03/PN153_s-function_arrays_arguments_red.png
https://imperix.com/doc/wp-content/uploads/2024/03/PN153_s-function_arrays_arguments_red.png
https://www.mathworks.com/help/coder/ug/what-are-column-major-and-row-major-representation-1.html20--%3E
https://mathworks.com/help/simulink/slref/sfunction.html

Example

A working example is available in the Simulink code (CPU version) of TN162.

C code on PLECS

PLECS provides a handy C-Script block that lets you write and compile custom C

code to integrate it into your model. It works in both simulation and code generation

modes.

https://imperix.com/doc/wp-content/uploads/2021/03/image-115.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-115.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-116.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-116.png
https://imperix.com/doc/implementation/finite-control-set-mpc
https://www.plexim.com/plecs/control/cscripts
https://imperix.com/doc/wp-content/uploads/2021/03/image-119.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-119.png

