
Oversampling configuration and utilization

PN154 | Posted on March 29, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

In a standard configuration, the control algorithm is executed just after each

sampling event. The oversampling feature enables the possibility to set up multiple

sampling events between each control algorithm execution.

This note explains how to configure the sampling events and how to retrieve the

oversampled values.

Configuring the oversampling

In the imperix ACG SDK, the sampling events are configured from the CONFIG block

by setting an oversampling ratio. This spreads equidistant sampling events among

the control period, starting from the main interrupt phase.

Configuration of oversampling in Simulink

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/wp-content/uploads/2021/03/image-210.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-210.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-212.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-212.png

Configuration of oversampling in PLECS

The Timings tab in Cockpit displays where the ADC sampling events are occurring.

To learn more about the Target timings tab, please refer to the Cockpit user guide.

When using the C++ SDK, void Adc_SetUserOversampling(int oversampling)
must be used in the UserInit(void) function.

tUserSafe UserInit(void) {
 // Sets CLOCK_0 at 50 kHz
 Clock_SetFrequency(CLOCK_0, 50e3);

 // Set the oversampling ratio to 4 (sampling = 200 kHz)
 Adc_SetUserOversampling(4);

 ConfigureMainInterrupt(UserInterrupt, CLOCK_0, 0.5);

 // some other code...

 return SAFE;
}Code language: C++ (cpp)

Retrieving the oversampled analog values

In its standard configuration, the ADC block or driver will only provide the last

sampled value. To retrieve older values, the ADC history feature must be used.

From the imperix library for Simulink or PLECS, the ADC history can be enabled and

then the quantity of value to retrieve is configured using the history depth
parameter. The ADC block will return a vector containing the values as shown below.

The sample with index 0 is the most recent sample.

https://imperix.com/doc/help/cockpit-user-guide#Target-timings
https://imperix.com/doc/wp-content/uploads/2024/03/image-3.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-3.png

Retrieving the oversamples in Simulink

Retrieving the oversamples in PLECS

The ADC history and synchronous averaging options are mutually exclusive.

When using the C++ SDK, Adc_ConfigureHistory must be used in the

UserInit(void) to enable the ADC history and configure its depth. Then the

Adc_GetHistory can be used in the interrupt routine to get the older ADC values.

tUserSafe UserInit(void) {
 // Sets CLOCK_0 at 50 kHz
 Clock_SetFrequency(CLOCK_0, 50e3);

 // Set the oversampling ratio to 4 (sampling = 200 kHz)
 Adc_SetUserOversampling(4);

 ConfigureMainInterrupt(UserInterrupt, CLOCK_0, 0.5);

 // Setup a history of 4 samples for ADC0
 Adc_ConfigureHistory(ADC0, 4);

 // some other code...

https://imperix.com/doc/wp-content/uploads/2024/03/image-7.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-7.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-6.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-6.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-4.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-4.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-5.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-5.png

 return SAFE
}

tUserSafe UserInit(void) {

 float s0, s1, s2, s3;

 s0 = Adc_GetHistory(ADC0, 0); // most recent sample
 s1 = Adc_GetHistory(ADC0, 1);
 s2 = Adc_GetHistory(ADC0, 2);
 s3 = Adc_GetHistory(ADC0, 3);

 return SAFE;
}Code language: C++ (cpp)

