Introduction to HDL Coder

PN162 | Posted on June 2,2021 | Updated on May 7, 2025

Shu WANG
Development Engineer
imperix - in

Table of Contents

o Intended use and alternatives to HDL Coder
e Licensing and installation of MATLAB HDL Coder
e Typical MATLAB HDL Coder workflow
o |mplementing a design using HDL Coder
o Testing a design in simulation
o Generating RTL code using MATLAB HDL Coder
o Adding_the module to a Vivado project

HDL Coder is a MATLAB add-on that can generate VHDL and Verilog code from MATLAB functions or Simulink models. This approach
can greatly accelerate rapid prototyping as the design is performed from a higher level of abstraction. The second benefit is the
possibility of simulating the FPGA logic directly from within Simulink.

A typical use case for HDL Coder is the implementation of a custom PWM modulator for the B-Box RCP power converter controller.

To find all FPGA-related notes, you can visit the FPGA development homepage.

Intended use and alternatives to HDL Coder

An alternative to HDL Coder is System Generator, another Simulink add-on that works very similarly. The main difference between
System Generator and HDL Coder is that System Generator targets exclusively Xilinx devices. As such, it generates pre-packaged core
IPs that can easily be imported into Vivado. Moreover, System Generator is bundled with Model Composer, another FPGA
development blockset that provides additional features that HDL Coder does not have.

Compared to high-level synthesis tools such as Model Composer (Simulink) and Vitis HLS (C++), System Generator and HDL Coder are
“lower-level” design tools intended for architecture-level designs, down to the flip-flop register. MATLAB HDL Coder allows finer control
over the resulting HDL code and is more adapted for peripheral designs (e.g. PWM modulator or SPI communication controller). Unlike
Model Composer and Vitis HLS, System Generator does not support AXI4-Stream interfaces.

Licensing and installation of MATLAB HDL Coder

HDL Coder is a paid add-on for MATLAB, which also required the Fixed-Point Designer add-on, as well as the MATLAB Coder add-on.

Installing HDL Coder is straightforward: open a MATLAB session, go to the HOME tab and click on Add-Ons. Search for HDL Coder
and hit install. The same process applies to Fixed-Point Designer and MATLAB Coder.

After the installation has finished, the HDL Coder library is available in the Simulink libraries. The command help hdlcoder may be
used in the Command Window.

The hdlsetuptoolpath command must be entered in the MATLAB Command Window to setup the FPGA synthesis software. The path
must be edited to match the installed Vivado version.

hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\20xx.x\bin\vivado.bat');Code language: |

Command Window

>> hdlsetuptoolpath(ToolNewe', 'Zilink Vivada', 'ToolPath', 'C:)Xilinx|Vivado)2020.2\bin\vivado.bat');
Prepending following ¥ilinx Vivado path(s) to the system path:
€14 Xilinx\ Vivadoh2020.2%bin

Jx o> v

Typical MATLAB HDL Coder workflow

https://www.linkedin.com/in/shu-wang-6581221b9/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/help/xilinx-system-generator
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/implementation/fpga-based-spi-communication-ip
https://fr.mathworks.com/help/deep-learning-hdl/ref/hdlsetuptoolpath.html
https://imperix.com/doc/wp-content/uploads/2021/06/hdlsetuptoolpath.png
https://imperix.com/doc/wp-content/uploads/2021/06/hdlsetuptoolpath.png

This section broadly outlines the main steps required to generate VHDL or Verilog sources using MATLAB HDL Coder. For more
detailed information the user should refer to the official documentation of which some are listed below:

e HDL Coder Getting Started Guide (mathworks.com)
e HDL Coder User's Guide (mathworks.com)

Implementing a design using HDL Coder

The screenshot below shows an example of a MATLAB HDL Coder design taken from the custom FPGA PWM modulator page. This
example will be used as a support to illustrate the key points of the MATLAB HDL Coder workflow. The sources are available in the zip

below.

update_rate

CO— H 1
naxt_dutycycie s
W 5
7 [UpdatedDutyCycePusOne
'

e
e

¢ e]
L] l y*
N

Shit Rignt
(G—*# Aitmetc
clock_pariod Length 1 o

Gy

clock_tmer

state_machine Carter
reg_Timer

state_machine

L]

8
2
‘l @
's

clock_prescaler

PWM implementation on FPGA using MATLAB HDL Coder

Download PN162_HDL_Coder_PWM.zip

The user creates the design using HDL Coder blocks (available in the Simulink library browser) as illustrated above. The logic must be

placed within a subsystem.
The input and output types are set as follows:

e [_nextDutyCycle, CLOCK_period, CLOCK_prescaler: 16-bit unsigned integer (Data type: uint16)
e CLOCK_clk_en, i_UpdateRate: 1-bit (Data type: boolean)

In HDL Coder, there is no model for the clock signal in FPGA. Instead, the sample period of the Simulink signals represents the FPGA
clock signal period. In the FPGA PWM example, the c/k_250_mhz output is used, which corresponds to a period of 4 ns.

Black Parameters: nest_dutycycle X
Inport

Provide an input port for a subsystem or model,
For Triggered Subsystems, 'Latch input by delaying outside signal’ produces
the value of the subsystem input at the previous time step.

For Function-Call Subsystems, turning 'On’ the 'Latch input for feedback
signals of function-call subsystem outputs’ prevents the input value to this
subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes

Main Signal Attributes
Output function cal
Minimum: Maximum:

o 7 [

Data type: | uint16 < >>

[Lock output data type setting against changes by the fixed-point tools
uUnit (e.g., m, m/s~2, N*m): SL, English, ...
[inherit |

Port dimensions (-4 for inherited):
= Ji

Variable-size signal: |Inherit
Sample time (-1 for inherited):
[4e0

signal type: |auto

9 Gt b ||

Testing a design in simulation

An HDL design can be validated using a test bench that uses standard Simulink blocks. Below is shown an example of a testbench,
which is further documented in the FPGA-based PWM modulator example.

https://www.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_gs.pdf
https://www.mathworks.com/help/pdf_doc/hdlcoder/hdlcoder_ug.pdf
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/wp-content/uploads/2021/06/hdlcoder_pwm-1024x583.png
https://imperix.com/doc/wp-content/uploads/2021/06/hdlcoder_pwm-1024x583.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN162_HDL_Coder_PWM.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN162_HDL_Coder_PWM.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN162_HDL_Coder_PWM.zip
https://imperix.com/doc/wp-content/uploads/2021/06/dutycycle_input_config.png
https://imperix.com/doc/wp-content/uploads/2021/06/dutycycle_input_config.png
https://imperix.com/doc/implementation/fpga-pwm-modulator

250Mhz

uintg |Rericd-ticks

]

[aint1p |imertoks

CLOCK freq

Simulation result of a Pulse Width Modulator using MATLAB HDL Coder

Generating RTL code using MATLAB HDL Coder

1. Go to Apps and click on HDL Coder.
2. Click on Workflow Advisor.

SIMULATION DEBUG MODELING FORMAT APPS HDLCODE X
; re o
W @ B e =) g w2
HDLBlock ~ HDLCode Settings || pwh GEN ¥ Genemiz Generate Share
Proj -

es v Advisor - HDL Code Testbench ~ =

3. In the pop-up window, select
o Generic ASIC/FPGA as target workflow,
o Xilinx Vivado as synthesis tool,
o Zynq xc7z030fbg676-3 as device.

4. Set a correct project folder.

5. Click on Run This Task.

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/hdlcoder_pwm_tb-1024x341.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/hdlcoder_pwm_tb-1024x341.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-5.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-5.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-109.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-109.png

& HOL Workflow Advisor - PN162_HDLCoder PWM_2020b/HDLCODER_PWM - [m] X
File Edit Run Help
Pl ew
1.1. Set Target Device and Synthesis Tool
Analysis (“Triggers Update Diagram)
Set Target Device and Synthesis Tool for HDL code generation

v @ HDL Workflow Advisor
~ (G 1. set Target
#1.1. Set Target De

Input Parameters
[E] 1.2 set Target Freq)

> G 2 Prepare Model For H Target workfiow: | Generic ASIC/FPGA <

> @ 3. HDL Code Generatio Target platform: - Launch Board Manager

> G 4 FPGA Synthesis and A
Synthesis tool: | xiinx Vivado ~ | Teol version: | 2020.2
Family: | Zyng ~ | Device: [xe7z030 -
Package: |fog676 v | speea: [3 =
Project folder: | D:\Vivado_workspace\KnowledgeBase|\PN162\Generated | | sromse...

Run This Task

Result: [~] Mot Run

Click Run This Task
< >
Aopy
< >
6. Set the target frequency to 250MHz.
(£ HDL Workflow Advisor - PN162_HDLCoder PWM/HDLCODER_PWM — O X

File Edit Run Help
Pl ew

1.2. Set Target Frequency
Analysis

v @ HDL Workflow Advisor
v 1. Set Target
@ 9 Set Target Frequency
o #1.1. Set Target De

Input Parameters
1.2. Set Target Frequ

4 @ 2 Prepare Model For HIJ T (R
[E] 21, Check Global 5¢
[E] ~22 Check Algebra
[E] »23. Check Black
[E] ~2.4. Check sample
> B 3.HDL Code Generation| Click Run This Task
> [4 FreA Synthesisand A

Result: [=] Mot Run

7. Run the rest of the tasks until 3.1.3 Set Advanced Options. There, set Reset asserted level to Active-low.

(& HDL Workflow Advisor - PN162_HDLCoder_PWM/HDLCODER_PWM - O x

Fle Edit Run Help

o —

3.1.3. Set Options
w
IZR HDL Workflow Advi e R
~ [Gg 1. et Target
Pl Q. . -
@ 12 set Tan Clock input port: clk Clock enable input port: | ck_enable

R e O
T re— T E—

@ 22 Chec
& 23 Ched Additional settings

@ ~24 ched General Ports Coding style Coding standards Advanced Floating Point Target
~ (i@ 3.HDL Code Comment in header: |

|
¥ @ ; ?E: 1C55 Verilog file extension: v VHDL file extension:
© 2iod ity comt postc Pagepostic (o |
o 313.9, Reserved word postfix: _rsvd Split entity file postfix: _entity
@ 3145 Gocked process postix: Spiit arch file postfi: | _arch
@ 155 Complex real part postfix: [spiit entity and architecture

=] #3.2. Gene

5 @ 4 FPGA Synthe| Complex imaginary part postfix: D VHDL architecture name:

Module name prefix:

Enable prefix: Timing controller postfix:
ER—

VHOL library name: work.

Il

I:‘ Generate VHDL code for model references into a single library

Apply

8. Run the rest of the tasks, until 3.2. Generate RTL Code and Testbench finishes.
Do not run synthesis now, since we use MATLAB HDL Coder only to generate the RTL sources. The synthesis will be performed
by Vivado.

https://imperix.com/doc/wp-content/uploads/2021/08/image-51.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-51.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-52.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-52.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-61.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-61.png

& HDL Workflow Advisor - CoPwm_HDLCoder_Th/PWM_HDL_Coder - a x

Fle Edit Run Help

L I L

~ @@ HDL Workflow Advisor
~ G 1. set Target

@ 1.1, Set Target Devic

@ 12 Set Target Freque

~ (@ 2 Prepare Model For HDL
@ 21 check Global seti

@ 22 Check Algebraic

@ »23 Check Block Cor
@ ~2.4 check sample Ti

~ @ 3. HDL Code Generation
~ @ 31 Set Code Generati
@ 31.1.5etBasic O 222 Generating HDL for'CbPwm_HDL Coder_Tb/PWM_HDL_Coder

@ 312 setReport
@ 3.3 5et Advance

3.2. Generate RTL Code and Testbench

Analysis (*Triggers Update Diagram)
Generate RTL code and testbench for the seiected subsystem
Input Parameters
Generate RTL code
[] Generate test bench

[] Generate validation model

Run This Task

Resutt: @ Passed

: Using the config set for model CbPwm_HDLCoder_Tb for HDL code generation parameters

@ 314.5et Optimiz 222 Starting HDL check.
@ 3.1.5 Set Testbenc|
© 32 Geerateriico| | [DWamning: "Output Port 1' of 'CbPwm_HDI Coder Tb/Confi ' is not connected 10

@ 450 . _
e FoAGntessand A e 1y dlhdlcoder SimulinkConnection/initModel

In slhdlcoder HDLCoder/createPir
In slhdlcoder HDLCoder/checkhdl
In slhdlcoder HDLCoder/runCheckHdlAndPirFrontEnd

In slhdlcoder HDLCoder/makehdl

Help Apply

You can use the option Minimize Clock Enables to remove the clock enable port under
HDL Code Generation -> Global Settings -> Ports -> Minimize clock enables (check this box).

Adding the module to a Vivado project

Unlike System Generator, MATLAB HDL Coder does not generate a Vivado IP directly. Instead, the generated RTL sources must be
added to Vivado.

1. In Vivado, right-click on the Design Sources and select Add Sources

Source x Design | Signals | Board ? 00
Q = = + : o

b Design Sources (3}

>0 id)
@ del Hierarchy Update 3
i
® i) ' Refresh Hierarchy
e Constri
IP Hierarchy 3
~ [col
D Edit Constraints Sets...
> Simula Edit Simulation Sets...
b Utility £
y 4 Add Sources... % Alt+A

Report IP Status

Hierarchy | IP Sources Libraries Compile Order

Adding RTL sources to an existing Vivado project

2. Browse into the generated folders and select the source files

Add Sources x

Add or Create Design Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those file types to add to your project. Create ‘
anew source file on disk and add it to your project.

+
Index Name Library Location
e 1 HDLCODER_PWM.vhd xil_defaullib C/KB/PN162/Generated/hdlsr/PN162_HDLCoder_PWHM
® 2 state_machine vhd xil_defaultlib C:/KB/IPM162/Generated/hdlsrc/PN162_HDLCoder_PWHM
AddFiles | ‘ Add Directories | | Create File

Scan and add RTL include files into project
[:] Copy sources into project

Selecting sources files for integration within an existing Vivado project

https://imperix.com/doc/wp-content/uploads/2021/06/image-123.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-123.png
https://www.mathworks.com/help/hdlcoder/ug/minimize-clock-enables-and-reset-signals.html
https://imperix.com/doc/wp-content/uploads/2021/08/image-53.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-53.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-56.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-56.png

3. Give Vivado some time to update its sources hierarchy
4. Finally, the module can be added to the block design:
o by doing a right-click and selecting Add Module...
o or by directly drag-and-dropping the design source

4 Add Module x

Select a module to add to the block design.

Module type: RTL A
Search: @

@ delay_counter (delay_countervhd)
@ HDLCODER_PWM (HDLCODER_PWM vhd)
® ix_axis_interface (AX15_interface vhd)

@ state_machine (state_machine vhd)

F

HDLCODER_PWM_0

lll— clock

— » clock_period[15:0]
= » clock_prescaler[15:0]
P clock_timer[15:0]

P clock_clk_en ce_out
- clk PWM =
Q reset

—{ clk_enable
= next_dutycycle[15:0]
= update_rate

HDLCODER_PWM_v1_0
FPGA PWM generated by MATLAB HDL Coder

A step-by-step example explaining how to integrate the PWM modulator IP in a Vivado project is available on the FPGA PWM
modulator page.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2021/08/image-58.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-58.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-60.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-60.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

