
Xilinx Model Composer introduction

PN163 | Posted on June 1, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

What is the difference between Model Composer and System Generator?

Downloading and installing Xilinx Model Composer

Typical workflow example for Xilinx Model Composer

How to launch Model Composer?

Design example of a PI controller using Model Composer

Adding the Model Composer Hub

Defining the IP input and output ports

Implementing the algorithm

Verifying the design in simulation

Generating an IP core using Model Composer

Model Composer is a Simulink add-on software developed by Xilinx. It is a high-level

synthesis (HLS) tool that allows the user to program an FPGA-based algorithm

without the need to write code. Thanks to this approach, behavioral simulations can

be run prior to code generation, enabling engineers to validate the correctness of

their FPGA design very early in the design process.

Since it is directly integrated within the Matlab Simulink environment, Model

Composer is fairly easy to use for regular Simulink users. The provided blockset

offers numerous elementary blocks and functions that strongly resemble existing

Simulink blocks. Therefore, if users already have a CPU-based model available in

Simulink, they can easily build an FPGA model by replacing the Simulink blocks with

corresponding Model Composer blocks.

https://www.linkedin.com/in/benoit-steinmann/

Simulink blocks

Model Composer blocks

An alternative to Model Composer is Xilinx Vitis HLS, a tool that provides the same

features but for C++ developers and that is free of charge. As a matter of fact, Model

Composer uses Vitis HLS under the hood. Indeed, it first generates C++ code as an

intermediary step and then uses Vitis HLS to generate the Vivado IP. Despite this

process, the user does not need to be familiar with C++ since everything is handled

automatically by Model Composer.

To find all FPGA-related notes, you can visit FPGA development homepage.

What is the difference between Model Composer

and System Generator?

Model Composer is bundled with System Generator, another FPGA development

blockset. System Generator blocks are “lower-level” and better suited for

architecture-level designs. Typical examples are the FPGA-based PWM modulator

design or the SPI communication controller.

https://imperix.com/doc/wp-content/uploads/2021/06/image-178.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-178.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-180.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-180.png
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/help/xilinx-system-generator
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/implementation/fpga-based-spi-communication-ip

Model Composer, however, is an HLS tool. It is therefore tailored for higher-level

designs such as control algorithms. It supports AXI4-Stream interfaces (which allow

to easily interconnect multiple IP blocks), complex data types, and math functions.

The behavior of HLS tools is basically the following: 1) receive input data, 2) execute

the algorithm, and 3) outputs results. It means that, unlike System Generator, it is not

well suited to fine signal manipulation (such as peripheral signals).

Downloading and installing Xilinx Model Composer

Model Composer, along with System Generator, is part of the Xilinx Add-on for

MATLAB & Simulink, which can be bought as an add-on license to Vivado or Vitis. At

the time of writing this page, the price is set at $500 for a node-locked license and

$700 for a floating license (a free 90 days license is available).

To install the Xilinx Add-on for MATLAB & Simulink, an option must be selected

during the installation of Xilinx Vivado System Edition. If Vivado is already installed,

the Vivado Add Design Tools program should be used to install the add-on.

Installation instructions are available on the Installing Xilinx Blockset Add-on for

MATLAB & Simulink page.

More information on the Xilinx Add-on for MATLAB & Simulink is available on this

Xilinx page.

Typical workflow example for Xilinx Model

Composer

This section broadly outlines the main steps required to generate a Vivado IP using

Model Composer. It is not its purpose to be exhaustive but rather serves as a

guideline. It also provides tips for designs targetting imperix controllers. For more

detailed information, the user should refer to the official Model Composer User

Guide.

How to launch Model Composer?

If Xilinx Add-on for MATLAB & Simulink has been successfully installed, a “Model

Composer and System Generator” shortcut should have been created on the

desktop. This program will open a new MATLAB session and load the Model

Composer blockset library for Simulink.

https://imperix.com/doc/help/xilinx-system-generator
https://imperix.com/doc/help/xilinx-blockset-for-simulink
https://imperix.com/doc/help/xilinx-blockset-for-simulink
https://www.xilinx.com/products/design-tools/vivado/integration/addon-matlab-simulink.html#buy
https://www.xilinx.com/products/design-tools/vivado/integration/addon-matlab-simulink.html#buy
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1262-model-composer-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1262-model-composer-user-guide.pdf

If multiple concurrent MATLAB Simulink installations are present on the computer,

Model Composer will launch the latest version of MATLAB Simulink available by

default. It can cause problems if the latest version of Simulink is not compatible with

System Generator (for instance Model Composer 2020.2 is not compatible with

MATLAB R2021a). However, it is possible to manually change which version of

MATLAB Simulink System Generator will use as explained in the installing Xilinx Add-

on for Simulink page.

Design example of a PI controller using Model

Composer

The sources of the Model Composer example used in this tutorial can be

downloaded below. It is a PI-based current controller for a buck converter, based on

the algorithm presented on the PI controller implementation for current

control technical note. This example will be used as support to illustrate the key

points of the Model Composer workflow.

It is highly recommended to read through the high-level synthesis for FPGA

developements page first to see how this IP integrates into a complete design. It will

help understand some of the choices made, notably regarding the input and output

ports.

Click to download PN163_Model_Composer_PI.zip

Adding the Model Composer Hub

The first step of any Model Composer design is to add a Model Composer Hub which

serves to configure the compilation of the design and the IP core generation. From

this block, the following should be configured:

The Subsystem name specifies the name of the top-level subsystem that will

be used to generated the IP

The Code directory defines where the IP sources will be generated

The Target should be HLS C++ code. The reason is that Model Composer uses

the HLS PIPELINE directive which cause problems in a control application such

as our. Unfortunately, we have to go through Vitis HLS C++ to disable this

directive. This issue is further explained in a section below.

The Project device should be xc7z030fbg676-3

The FPGA clock frequency should be 250 MHz

The Throughput factor should be 1

https://imperix.com/doc/help/xilinx-blockset-for-simulink
https://imperix.com/doc/help/xilinx-blockset-for-simulink
https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN163_Model_Composer_PI.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN163_Model_Composer_PI.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN163_Model_Composer_PI.zip

Defining the IP input and output ports

The user can then create a subsystem. In this example, the subsystem is called

XMC_PI_floating (for Xilinx Model Composer PI using floating-point arithmetic). We’ll

begin by specifying all the input and outputs of the IP. As shown in the screenshot

below, the port data types are specified directly in the signal attributes of the Inports

and Outports. We’ll use the following:

The parameters coming from the CPU (Il_ref, Kp and Ki) are set to single.

The inputs Il_raw, Vin_raw and Vout_raw will be directly connected to the

ADC interfaces and therefore must be set as int16.

The input Ts is a uint32 value holding the sampling time in nanoseconds.

The input CLOCK_period is a uint16 value representing the PWM period in

ticks.

The output duty_cycle_ticks is a uint16 value that will be connected to the

PWM IP.

https://imperix.com/doc/wp-content/uploads/2021/07/image-12.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-12.png

We then add an Interface Spec block that specifies the IP core interface protocols.

We use the following configuration:

Function Protocol

We set the Function Protocol Mode to No block-level I/O protocol. We’ll

use port-level protocol instead to tell the IP when it has to process data.

Input ports

After the user CPU code start, the CLOCK_period input is constant. Thus,

its mode is set to No protocol.

All the other inputs use the AXI4-Stream protocol.

Output ports

The duty_cycle_ticks output uses the Valid Port mode. As shown on

the very last image of this page, it will generate an additionnal “valid” port

duty_cycle_ticks_ap_vld indicating when the duty_cycle_ticks
can be read.

https://imperix.com/doc/wp-content/uploads/2021/07/image-16.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-16.png

Model Composer only supports up to 8 inputs and 8 outputs per IP.

Implementing the algorithm

Below is shown the XMC_PI_floating subsystem. It shows that a Model Composer

design is very similar to a standard Simulink design.

https://imperix.com/doc/wp-content/uploads/2021/07/image-17.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-17.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-22.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-22.png

PI-based FPGA current control using Xilinx Model Composer

(XMC_PI_floating subsystem)

PI subsystem implementation using Xilinx Model Composer

Saturation subsystem implementation using Xilinx Model Composer

Here are some comments regarding this design:

All the inputs except CLOCK_period are converted to the single data type using

data type conversion (DTC) blocks. When developing a new design, we

recommend using single-precision floating-point as much as possible, as this

makes the design much less prone to errors. Once the design has been

validated, its latency and resource usage can be further optimized by

converting parts of it to fixed-point arithmetic.

https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_algo-1024x445.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_algo-1024x445.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_pi.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_pi.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_sat.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_sat.png

The ADC values provided by the starter template (Il_raw, Vin_raw and

Vout_raw) are the raw results from the ADC chips. They are multiplied by a

gain inside the IP to obtain physical values. An example of gain computation is

available on the ADC block help page. To simplify the model, the ADC gains are

defined as constants, and offsets are simply ignored. The user could choose to

use tunable parameters coming from the CPU so that the ADC can be tuned in

real-time.

The Ts input provided a value in nanoseconds. It is multiplied by 1e-9 to obtain

a value in seconds.

A DTC block is used to transform the single output of the saturation block into

a fixed point value. Indeed, the output of the saturation block is a duty cycle

ranging from 0.0 to 1.0. Such a narrow range is particularly well-suited for a

fixed-point algorithm, as we know beforehand that only a single bit is required

for the integer part. We arbitrarily choose a fractional length of 15 bits so we

obtain a fix16_15 value. This value is then multiplied by the CLOCK_period,

which is a uint16 value, resulting in a fix32_15 (32-bit, 17-bit integer part, and

15-bit fractional part). Since the output is a number of ticks, it must be an

integer value, and the fractional part is removed by simply transforming the

result into a uint16 using a DTC block.

In the PI subsystem, a comparison is done between the sign of the error and

the sign of the integrator. Below are shown two possible implementations for

such a comparison. The left option use the signum block which outputs a

single value. On the right is shown a much more FPGA-optimized

implementation in which the sign bits are directly compared. The reinterpret

blocks are required because the bit slice does not support floating point inputs.

Straightforward but poorly optimized sign comparison

https://imperix.com/doc/software/analog-data-acquisition
https://imperix.com/doc/wp-content/uploads/2021/07/image-18.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-18.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-20.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-20.png

Highly optimized sign comparison by directly comparing the sign bit

Verifying the design in simulation

A Model Composer model can be verified using standard Simulink simulation. It

allows to easily generate stimulus inputs and observe the results. Below is shown

the test bench that is used to validate the proper functioning of the Model Composer

implementation of the FPGA current control. It compares the result of the already-

tested Simulink implementation of the basic PI-control technical note with the Model

Composer design.

Validation of the Xilinx Model Composer (XMC) design

The screenshot below shows the buck converter model used to validate the current

control algorithm. It also simulates the PWM generation. The outputs of this model

are continuous values in volts or amperes. The ADC sample subsystem models the

ADC chips behavior by transforming the continuous physical values into sampled

int16 values.

https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/wp-content/uploads/2021/08/image-38.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-38.png

Buck Converter Model using

Simscape Electrical Specialized Power Systems library

The Simulink-based current control algorithm that serves as the reference

implementation is shown below.

Simulink-based current control algorithm

https://imperix.com/doc/wp-content/uploads/2021/07/image-21.png
https://imperix.com/doc/wp-content/uploads/2021/07/image-21.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-39.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-39.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-41.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-41.png

The reference current input is stepped from 3 A to 5 A. It can be observed that both

implementations are behaving very similarly.

Comparison of Simulink-based vs Xilinx Model Composer (XMC)

algorithm

Generating an IP core using Model Composer

As mentioned earlier, Model Composer is an automated generation code tool based

on Vivado HLS C++. Unfortunately, Model Composer uses the #pragma HLS

PIPELINE directive by default which causes issues in our use case.

Why is the HLS PIPELINE pragma an issue?

The PIPELINE primitive reduces the initiation interval (II). In other words, it increases

the maximal throughput of the IP by reducing the number of clock cycles between

each input. The side effect is that the data is “stuck” in the IP until new data is fed to

the input. For instance, if the IP latency is 10, then the result for the 1st data will be

available only after the 10th data has been loaded into the IP. This is suitable for

applications such as video processing where the data stream is constant and

throughput optimization is most important. However, in a closed-loop control system

such as ours, this behavior is not adequate, so we need to remove the HLS PIPELINE

directive.

For more information on the PIPELINE directive, please refer to the Xilinx HLS

pragmas documentation.

https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_model_simu_scope.png
https://imperix.com/doc/wp-content/uploads/2021/06/model_composer_model_simu_scope.png
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#fde1504034360078
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/hls_pragmas.html#fde1504034360078

IP core generation step-by-step procedure

Open the Model Composer Hub

make sure the target is HLS C++ code

select a code directory, for instance

C:/KnowledgeBase/XMC/PiCtrl/Code
click Generate

Launch the Vitis HLS Command Prompt program

Change the directory to the parent folder of the code directory specified above

cd C:/KB/PN163/Generated

Launch the run_hls.tcl script, which creates a Vitis HLS project

vitis_hls -f ./Code/run_hls.tcl

Open the freshly created project with Vitis HLS by running the command below.

(Alternatively, the project can be manually opened from Vitis HLS.)

vitis_hls -p ./Code/XMC_CurrentControl_prj

https://imperix.com/doc/wp-content/uploads/2021/08/image-42.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-42.png

To remove the HLS pipeline directive:

Open the source file XMC_CurrentControl.cpp.

Open the tab Directive on the right.

Find the HLS pipeline directive, right click and hit “Remove directive”.

Alternatively, the line e #pragma HLS pipeline can be manually

removed from the C++ code.

Save the project (Ctrl+S).

Launch the C Synthesis by going to Solution -> Run C Synthesis -> Active

Solution

https://imperix.com/doc/wp-content/uploads/2021/08/image-44.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-44.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-46.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-46.png

Once the synthesis is done, export the RTL using the Vivado IP format

Click Solution -> Export RTL,

Select the Vivado IP (.zip) format,

The generated RTL can be VHDL or Verilog, it does not matter.

Choose an output location, for instance C:/KB/PN163/Generated/IP,

Click OK.

Performance and resource estimates

The FPGA of imperix controllers (part: xc7z030fbg676-3) possesses 78600 LUT,

157200 FF and 400 DSP, from which around ~30% is used by the imperix firmware

https://imperix.com/doc/wp-content/uploads/2021/08/image-49.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-49.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-48.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-48.png

IP. By clicking on Solution -> Open Report -> Synthesis, the user has access to the

synthesis summary report which estimates the IP latency and resource usage. Make

sure that the Pipelined option is set to no.

Our IP shows the following estimation: 3460 LUT (4.4% of total), 2988 FF (1.9%), and

9 DSP (2.3%).

The tool generates a warning if it thinks a timing violation may occur. However, this

is only an estimation. We observe that Vitis HLS always generates a timing violation

warning when using an integer to floating-point conversion (uitofp operation) and a

target period of 4 ns. However, when implementing the full FPGA design, Vivado still

reaches successful timing closure.

Adding the IP core to a Vivado project

To interconnect the generated IP with other IPs, it needs to be added to a Vivado

project. To do, in Vivado:

Unzip the file generated by Vitis HLS (XMC_CurrentControl.zip),

Go to the IP Catalog,

Right-click and select Add Repository…

Select the folder containing your unzipped IP (e.g.

C:\imperix\sandbox_sources\my_IPs). This folder can cotain multiple IPs.

https://imperix.com/doc/wp-content/uploads/2021/08/image-50.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-50.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-75.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-75.png

And finally the IP can be added to a block design like any other Xilinx IP.

To see this IP in action please refer to the FPGA current control using high-level

synthesis page.

Back to FPGA development homepage

https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-64.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-64.png
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

