
Xilinx Vitis HLS introduction

PN164 | Posted on June 2, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Alternative to Xilinx Vitis HLS

Downloading and installing Xilinx Vitis HLS

Xilinx Vitis HLS example workflow

Creating a xilinx Vitis HLS project

Defining the IP input and output ports

Implementing the algorithm

Generating an IP core using Vitis HLS

Xilinx Vitis HLS (formerly Xilinx Vivado HLS) is a High-Level Synthesis (HLS) tool

developed by Xilinx and available at no cost. Vitis HLS allows the user to easily create

complex FPGA-based algorithms using C/C++ code. It supports complex data types

(floating-points, fixed-points,…) and math functions (sine, arctan, sqrt,…). It also supports

AXI4-Stream to easily exchange data with other IPs.

This tools is particularly useful when porting a control algorithm from the CPU to the FPGA

of a power converter controller such as the B-Box RCP, the B-Board PRO.

To find all FPGA-related notes, you can visit FPGA development homepage.

Alternative to Xilinx Vitis HLS

An alternative to Vitis HLS is Model Composer, which provides the same features in a

MATLAB Simulink environment. For “lower-level” designs such as PWM modulators, tools

such as System Generator or HDL Coder are more appropriate.

Compared to Model Composer, Vitis HLS presents the advantage of being standalone and

free of cost. However, Vitis HLS may be more difficult to use, as it requires some C++ skills.

Moreover, it is much more tedious to write testbenches for Vivado HLS designs.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-system-generator
https://imperix.com/doc/help/matlab-hdl-coder

Downloading and installing Xilinx Vitis HLS

Xilinx Vitis HLS is installed alongside Vivado, as details in the installing Vivado Design

Suite page.

Xilinx Vitis HLS example workflow

This tutorial broadly outlines the main steps required to generate a Vivado IP using Vitis

HLS. It is not its purpose to be exhaustive but rather serves as a guideline. It also provides

tips for designs targetting imperix controllers. For more detailed information, the user

should refer to the Xilinx documentation, such as:

The High-Level Synthesis Tutorial (xilinx.com)

Getting Started with Vitis HLS (github.com)

Xilinx HLS basic examples (github.com)

The sources of this Xilinx Vitis HLS example can be downloaded below.

Click to download PN164_Xilinx_Vitis_HLS.zip

The tutorial uses a PI-based current control implementation as an example to illustrate the

key points of the Xilinx Vitis HLS workflow. It is based on the Forward Euler method, which

is presented on the PI controller implementation for current control technical note.

It is highly recommended to read through the high-Level synthesis for FPGA developments

page to see how this IP integrates into a complete design. It will help to understand some

of the choices made, notably concerning the input and output ports.

Creating a xilinx Vitis HLS project

1. Launch Xilinx Vitis HLS (the following screenshots comes from Vitis HLS 2020.2)

2. Click on Create Project or go to File -> New Project…

3. Enter a project name and hit Next

https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/vivado-design-suite-installation
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug871-vivado-high-level-synthesis-tutorial.pdf
https://github.com/Xilinx/Vitis-Tutorials/tree/master/Getting_Started/Vitis_HLS
https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN164_Xilinx_Vitis_HLS.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/PN164_Xilinx_Vitis_HLS.zip
https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga

4. Chose a top function name. This will also be the name of the resulting Vivado IP. Hit Next

5. There is no need to select a testbench file at this stage. Hit Next.

https://imperix.com/doc/wp-content/uploads/2021/06/image-141.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-141.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-142.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-142.png

6. Setup the clock period of 4 ns. Select the part xc7z030fbg676-3, keep Vivado IP Flow

Target for the Flow Target, and hit Finish.

7. Add sources the C++ source files to the project. In this example, we add the sources

PiBasedCurrentControl.cpp and PiBasedCurrentControl.h. These files are available

in the zip provided above.

https://imperix.com/doc/wp-content/uploads/2021/06/image-143.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-143.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-84.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-84.png

Below is the C++ code of the algorithm used in this example, for reference. Each portion of

this code is explained and commented on in the following sections.

PI-based current control in C++ using Vitis HLS

#include "PiBasedCurrentControl.h"

#include <hls_stream.h> // hls::stream
#include <hls_math.h> // hls::signbit
#include <stdint.h> // int16_t, uint16_t

#include "ap_fixed.h"

// Duty cycle saturation limits
#define SAT_LIMIT_HIGH 1.0f
#define SAT_LIMIT_LOW 0.0f

// Gains for imperix PEB 8038 half-bridge SiC power module
// with a B-Box frontpanel gain value of x4 for all inputs
const float Gain_Il = (10/32768)*1/(0.05*4); // 50 mV/A, x4 B-Box gain
const float Gain_Vin = (10/32768)*1/(0.00499*4); // 4.99 mV/A, x4 B-Box gain
const float Gain_Vout = (10/32768)*1/(0.00499*4); // 4.99 mV/A, x4 B-Box gain

void PiBasedCurrentControl(hls::stream<int16_t>& in_Vin_raw,
hls::stream<int16_t>& in_Vout_raw,
hls::stream<int16_t>& in_Il_raw,
hls::stream<float>& in_Il_ref,
hls::stream<float>& in_Ki,
hls::stream<float>& in_Kp,
hls::stream<uint32_t>& in_Ts,
uint16_t in_CLOCK_period,
uint16_t &out_duty_cycle_ticks)

{
#pragma HLS TOP name=PiBasedCurrentControl
#pragma HLS INTERFACE axis port=in_Vin_raw
#pragma HLS INTERFACE axis port=in_Vout_raw
#pragma HLS INTERFACE axis port=in_Il_raw
#pragma HLS INTERFACE axis port=in_Il_ref
#pragma HLS INTERFACE axis port=in_Ki
#pragma HLS INTERFACE axis port=in_Kp

https://imperix.com/doc/wp-content/uploads/2021/08/image-86.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-86.png

#pragma HLS INTERFACE axis port=in_Ts
#pragma HLS INTERFACE ap_none port=CLOCK_period
#pragma HLS INTERFACE ap_vld port=duty_cycle_ticks
#pragma HLS INTERFACE ap_ctrl_none port=return

// read inputs

int16_t Vin_raw = in_Vin_raw.read();
int16_t Vout_raw = in_Vout_raw.read();
int16_t Il_raw = in_Il_raw.read();
float Il_ref = in_Il_ref.read();
float Ki = in_Ki.read();
float Kp = in_Kp.read();
float Ts_ns = (float) in_Ts.read();

// apply ADC gains

float Vin = Gain_Vin * (float)Vin_raw;
float Il = Gain_Il * (float)Il_raw;
float Vout = Gain_Vout * (float)Vout_raw;

// transform from nanoseconds to seconds

float Ts = Ts_ns * 1e-9f;

// error

float err = Il_ref - Il;

// PI

static float accumulator = 0;
#pragma HLS RESET variable=accumulator

static bool saturation = false;
#pragma HLS RESET variable=saturation

float Ki_times_Ts = Ki*Ts;
bool if_same_sign = hls::signbit(accumulator) == hls::signbit(err);
bool clamping = if_same_sign & saturation;

if(!clamping) {
accumulator += Ki_times_Ts*err;

}

float pi_result = accumulator + Kp*err;

// Duty cycle computation

float duty_cycle = (Vout + pi_result) / Vin;

if (duty_cycle > SAT_LIMIT_HIGH) {
duty_cycle = SAT_LIMIT_HIGH;
saturation = true;

} else if (duty_cycle <= SAT_LIMIT_LOW) {
duty_cycle = SAT_LIMIT_LOW;
saturation = true;

}
else
{

saturation = false;
}

// Transform duty cycle in a value in ticks
// The PWM carrier varies between "0" and "in_CLOCK_period" ticks
// so the duty_cycle_ticks must have the same range

ap_fixed<17,1> duty_fixed = duty_cycle;
out_duty_cycle_ticks = (uint16_t) (duty_fixed*in_CLOCK_period);

}
Code language: C++ (cpp)

Defining the IP input and output ports

The code below defines the inputs and outputs of the IP. We made the following choices:

Data types:

The parameters coming from the CPU (Il_ref, Kp and Ki) are set as single-

precision (float).

The inputs Il_raw, Vin_raw and Vout_raw will be directly connected to the

ADC interfaces and as such must be set as int16.

The input Ts is a uint32 value holding the sampling time in nanoseconds.

The input CLOCK_period is a uint16 value representing the PWM period in ticks.

The output duty_cycle_ticks is a uint16 value that will be connected to the

PWM IP.

Interfaces

After the user CPU code starts, the CLOCK_period input is constant. Thus its

mode is set as ap_none (No protocol).

The duty_cycle_ticks output uses the ap_vld (Valid Port) mode. As shown on

the very last image of this page, it will generate an additionnal “valid” port

duty_cycle_ticks_ap_vld indicating when the duty_cycle_ticks can be

read.

All the other inputs use the AXI4-Stream protocol.

void PiBasedCurrentControl(hls::stream<int16_t>& in_Vin_raw,
hls::stream<int16_t>& in_Vout_raw,
hls::stream<int16_t>& in_Il_raw,
hls::stream<float>& in_Il_ref,
hls::stream<float>& in_Ki,
hls::stream<float>& in_Kp,
hls::stream<uint32_t>& in_Ts,
uint16_t in_period,
uint16_t &out_dutycycle)

{
#pragma HLS TOP name=PiBasedCurrentControl
#pragma HLS INTERFACE axis port=in_Vin_raw
#pragma HLS INTERFACE axis port=in_Vout_raw
#pragma HLS INTERFACE axis port=in_Il_raw

#pragma HLS INTERFACE axis port=in_Il_ref
#pragma HLS INTERFACE axis port=in_Ki
#pragma HLS INTERFACE axis port=in_Kp
#pragma HLS INTERFACE axis port=in_Ts
#pragma HLS INTERFACE ap_none port=CLOCK_period
#pragma HLS INTERFACE ap_vld port=duty_cycle_ticks
#pragma HLS INTERFACE ap_ctrl_none port=return

 // implementation...

}Code language: C++ (cpp)

Implementing the algorithm

The algorithm implemented in this example is the same as the one in the Model Composer

introduction. Taking a look at that page may help to understand the algorithm.

The read() method reads one value from an AXI4-Stream. The algorithm starts by reading

all the stream inputs. The Ts input is multiplied by 1e-9 to obtain a value in seconds.

int16_t Vin_raw = in_Vin_raw.read();
int16_t Vout_raw = in_Vout_raw.read();
int16_t Il_raw = in_Il_raw.read();
float Il_ref = in_Il_ref.read();
float Ki = in_Ki.read();
float Kp = in_Kp.read();
float Ts_ns = (float) in_Ts.read();
float Ts = Ts_ns * 1e-9f;Code language: C++ (cpp)

The ADC values provided by the starter template are the raw result from the ADC chips.

They must be multiplied by a gain to obtain physical values. An example of gain

computation is available on the ADC block help page. To simplify the model, the ADC gains

are defined as constants and offsets are simply ignored. This example considers the

sensor sensitivities of a PEB 8038 module. The user could choose to use tunable

parameters coming from the CPU so that the ADC can be tuned in real-time.

// Gains for imperix PEB 8038 half-bridge SiC power module
// with a B-Box frontpanel gain value of x4 for all inputs
const float Gain_Il = 10/32768*1/(0.05*4); //50 mV/A, x4 frontpanel gain
const float Gain_Vin = 10/32768*1/(0.00499*4); //4.99 mV/A, x4 frontpanel gain
const float Gain_Vout = 10/32768*1/(0.00499*4); //4.99 mV/A, x4 frontpanel gain

float Il = Gain_Il * (float)Il_raw;
float Vin = Gain_Vin * (float)Vin_raw;
float Vout = Gain_Vout * (float)Vout_raw;Code language: C++ (cpp)

The integrator of the PI controller acts as an accumulator and, thus, requires that its value

is kept in memory between executions. To that end, the static keyword must be used. The

HLS RESET pragma specifies that this variable is reset when the IP block reset input pin

(ap_rst_n) is asserted.

https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/software/analog-data-acquisition
https://imperix.com/products/power/half-bridge-module/

static float accumulator = 0;
#pragma HLS RESET variable=accumulatorCode language: C++ (cpp)

By design, the duty_cycle ranges from 0.0 to 1.0. Such a narrow range is particularly well-

suited for a fixed-point algorithm, as we know beforehand that only a single bit is required

for the integer part. We arbitrarily choose a fractional length of 15 bits so we obtain a

fix16_15 value. Since the output is a number of ticks, it must be an integer value, and the

fractional part is removed by simply transforming the result into a uint16.

#define SAT_LIMIT_HIGH 1.0f
#define SAT_LIMIT_LOW 0.0f

// some code...

float duty_cycle = (Vout + pi_result) / Vin;

if (duty_cycle > SAT_LIMIT_HIGH) {
duty_cycle = SAT_LIMIT_HIGH;
saturation = true;

} else if (duty_cycle <= SAT_LIMIT_LOW) {
duty_cycle = SAT_LIMIT_LOW;
saturation = true;

}
else
{

saturation = false;
}
// Width = 16 bits, integer part = 1 bit
ap_fixed<16,1> duty_fixed = duty_cycle;

out_dutycycle = (uint16_t) (duty_fixed*in_period);
Code language: C++ (cpp)

Generating an IP core using Vitis HLS

Launch the C Synthesis by going to Solution -> Run C Synthesis -> Active Solution

https://imperix.com/doc/wp-content/uploads/2021/08/image-87.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-87.png

Once the synthesis is done, export the RTL using the Vivado IP format

Click Solution -> Export RTL,

Select the Vivado IP (.zip) format.

The generated RTL can be VHDL or Verilog, it does not matter.

Choose an output location, for instance C:/KB/PN163/Generated/IP,

Click OK.

Performance and resource estimates

The FPGA of imperix controllers (part: xc7z030fbg676-3) possesses 78600 LUT, 157200 FF

and 400 DSP, from which around ~30% is used by the imperix firmware IP. By clicking on

Solution -> Open Report -> Synthesis, the user has access to the synthesis summary report

which estimates the IP latency and resource usage. In this example, Vitis HLS shows the

following estimation: 2624 LUT (3.3% of total), 2211 FF (1.4%), and 9 DSP (2.3%).

The tool generates a warning if it thinks a timing violation may occur. However, this is only

an estimation. Experience has shown that Xilinx Vitis HLS always generates a timing

violation warning when using an integer to floating-point conversion (uitofp operation) and

a target period of 4 ns. However, when implementing the full FPGA design, Vivado still

reaches successful timing closure.

https://imperix.com/doc/wp-content/uploads/2021/08/image-89.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-89.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-91.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-91.png

Adding the IP core in a Vivado project

Here are the steps required to add the example IP generated by Xilinx Vitis HLS into a

Vivado project.

Unzip the file generated by Xilinx Vitis HLS (PiBasedCurrentControl.zip),

Go in the IP Catalog,

Right-click and select Add Repository…

Select the folder containing your unzipped IP (e.g.

C:\imperix\sandbox_sources\my_IPs). This folder can contain multiple IPs.

And finally the IP can be added to a block design like any other Xilinx IP

Example IP generated by Xilinx Vitis HLS

To see an example where the PI-based current control IP in action please refer to the high-

Level Synthesis for FPGA developments page.

Back to FPGA development homepage

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/image-82.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/image-82.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-92.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-92.png
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

