
Build a custom user interface to operate Imperix

power converters

PN175 | Posted on June 3, 2022 | Updated on May 7, 2025

Jessy ANÇAY

Sales & Project Engineer

•

Table of Contents

Accessing system and user variables from a custom user interface

Converter automation

Launch a user code on start-up

Operational state machine implementation

Safety considerations when using user interfaces

Custom user interface example

This note will address specific considerations to build a custom user interface for

the operation of Imperix power converters. It will focus on the main aspects to

consider when operating a grid-tied converter using the OPC UA protocol. The B-Box

RCP which embeds an OPC UA server can indeed be controlled with an OPC UA GUI

client. Several possibilities to implement custom interfaces are then available to the

users such as for instance:

Designing a GUI with MATLAB App Designer with the Industrial Communication

Toolbox

Using the open62541 C library and a C++ framework such as Qt or wxWidgets

Working with Python and Freeopcua with the tkinter package

Making a GUI can be seen as a complementary solution to the imperix remote

control software, which is often preferred for debug purposes. Also, the purpose of

the GUI is limited to real-time interactions with the power converter controller(s) and

is not related to how to program the controller(s), which can be done using dedicated

SDKs.

https://www.linkedin.com/in/jessy-ancay-a47615237/
https://imperix.com/doc/help/opc-ua
https://imperix.com/doc/help/gui-with-matlab-app-designer
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://open62541.org/
https://www.qt.io/
https://www.wxwidgets.org/
https://github.com/FreeOpcUa
https://docs.python.org/3/library/tkinter.html
https://imperix.com/software/bbcontrol/
https://imperix.com/software/bbcontrol/
https://imperix.com/software/
https://imperix.com/software/

A GUI (see below) tailored for a grid-tied PV inverter, similar to the one treated on the

page: Three-phase PV inverter for grid-tied applications, made in Matlab App

Designer is provided as an example. The GUI and the corresponding Simulink model

can be downloaded using the following link. Please note that it requires Matlab

version r2022a or newer.

This model is designed to automatically output PWM signals. It must therefore be

used with the utmost precaution to avoid irreversible damage to the power converter.

Download GUI_Imperix_Converter.zip

Custom user interface example for a grid-tied PV inverter

The implementation of such an interface is typically useful in order to manage the

run-time execution of a power converter, including for instance:

Status information (running, stopped, discharge, fault, etc.)

Real-time measurements (power flows, voltage, current, etc.)

Fault diagnosis information (log messages, probable causes, etc.)

https://imperix.com/doc/example/three-phase-pv-inverter
https://cdn.imperix.com/doc/wp-content/uploads/2022/06/GUI_Imperix_Converter.zip
https://imperix.com/doc/wp-content/uploads/2022/07/image-5.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-5.png

Operation set points (current, power, etc.)

Commands (start, stop, control mode change, etc.)

Accessing system and user variables from a

custom user interface

Starting with a small reminder on the B-Box RCP’s OPC UA variable might be useful.

There are two types of variables in the B-Box RCP: the Imperix system variables and

the user-created variables. The system variables provide configuration and status

information about the target. For the user-created variables, when a user code is

started, an OPC UA variable is created for each probe variable and tunable

parameter present in the user model (Simulink, PLECS or C++). More information on

the topic can be found on the page: OPC UA: the communication protocol for

industrial automation applications.

Converter automation

Designing a custom user interface usually translates the desire to automate and

simplify the operation of a given system. The two following sections will present how

to automatically launch a user code upon powering the B-Box RCP and how to

implement a state machine to automate the starting procedure of the power

converter.

Launch a user code on start-up

It must be noted that actions such as loading the user code file or a custom FPGA

bitstream file into the target or updating the target firmware cannot be performed

using OPC UA. Furthermore, a code must be running on the device for a client to be

able to access user variables and operate the converter. The user code can then

either be manually launched using the usual procedure or launched automatically

when powering the target (see procedure below). To check that the code is indeed

running on the target, one can access the User CPU state system variable. This

User CPU state variable returns the CPU state which can either be Running or

Offline.

To avoid starting Cockpit every time one wants to operate the converter with a

custom user interface, it can be interesting to automatically start a user code when

turning on the B-Box RCP. To do so, follow the procedure below:

https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/tunable-parameter
https://imperix.com/doc/software/tunable-parameter
https://imperix.com/doc/help/opc-ua
https://imperix.com/doc/help/opc-ua

Launch the user code as usual by pressing Ctrl+B on Simulink or Ctrl+alt+B on

PLECS. The Cockpit monitoring software should launch automatically.

Upload the code on your target by entering its IP address.

Once the code is running on the target, open the Target configuration window

Click on Save current code to save the current code on the SD card inside of

the B-Box RCP.

Click on the checkbox Load at startup to automatically launch the code when

the B-Box is turned-on.

Load user code at startup

This will save the control algorithm on the SD card inside the B-Box RCP. Then, when

the B-Box is turned on, it will automatically load and start the code from the SD card.

Operational state machine implementation

The idea here is to be able to start a power converter by pressing a single button. To

do so, a state machine can be implemented to automate the start-up and shut-down

procedure of a power converter. This can be especially interesting in the case of grid-

tied converters that require switching relays in a precise order to properly connect to

the grid.

Once the converter is properly started, the PWM signals can be automatically

activated using the Enable PWM outputs block. By doing so, Imperix power converter

can be up and running with the press of a single button.

Enabling the PWM outputs must be done with the utmost precaution to avoid

causing serious damage to the converter. Imperix recommends using the BB Control

button when possible.

Safety considerations when using user interfaces

By nature, custom user interfaces are not proper monitoring tools. As a

consequence, the user is less aware of what is happening inside the converter.

https://imperix.com/doc/wp-content/uploads/2024/03/image-1.png
https://imperix.com/doc/wp-content/uploads/2024/03/image-1.png
https://imperix.com/doc/software/enable-outputs

Imperix strongly recommends using the Cockpit monitoring software during the

development stage of power converters or for use cases where performance is

important (e.g. data logging).

Safety considerations then need to be taken even more seriously when operating

Imperix converts with a custom GUI. Here is a non-exhaustive list of safety measures

that can be implemented:

Proper configuration of the B-Box analog front-end protection limits (cf. Analog

front-end configuration on B-Box RCP).

Wiring of an emergency push button to the interlock connector of the B-Box.

Implementation of software error detection mechanism with a dedicated fault

state inside the converter state machine. Logging errors with the LOG block

could also be useful.

Custom user interface example

In this section, a custom GUI designed for the operation of a grid-tied three-phase PV

inverter is given as an example. This GUI was developed using Matlab App Designer.

The Simulink model for this example implements an operation state machine,

software error detection and logging, and automatic PWM activation. Both the

application and the model can be downloaded using the link at the top of the page.

Grid-tied PV inverter Simulink control model

The list of OPC UA user variables is given in the table below:

https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/software/log-message
https://imperix.com/doc/wp-content/uploads/2022/07/image-7-1024x670.png
https://imperix.com/doc/wp-content/uploads/2022/07/image-7-1024x670.png

Name
Data

type
Description

Vpv Single PV voltage [V]

Ipv Single PV current [A]

Vdc Single DC bus voltage [V]

Vdc_ref Single DC bus voltage reference [V]

Vg_a / Vg_b /

Vg_c
Single Grid voltage (phase A B and C) [V]

Ig_a / Ig_b / Ig_c Single Grid current (phase A B and C) [A]

theta Single Grid angle [rad]

w Single Grid angular frequency [rad/s]

Vg_d / Vg_q Single Grid voltage in dq [V]

Ig_d / Ig_q Single Grid current in dq [V]

Kp_Vdc / Ki_Vdc Single PI gains for DC bus controller

Kp_Ipv / Ki_Ipv Single PI gains for PV current controller

Kp_Ig / Ki_Ig Single PI gains for grid current controller

precharge_relay Single
The relay used to precharge the DC

bus

bypass_relay Single The relay used to connect to the grid

PV_relay Single The relay used to connect the PV panel

precharge_state Single State of the precharge state machine

operation_state Single State of the operation state machine

Table of the OPC UA user variables

