
OPC UA: the communication protocol for industrial

automation applications

PN177 | Posted on March 24, 2022 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

What is OPC UA?

Monitoring an imperix controller using OPC UA

Connecting to the imperix OPC UA server

Imperix system variables

Imperix methods

User-created OPC UA variables

Going further

Making an OPC UA GUI client using MATLAB

Making an OPC UA GUI client using C++

Making an OPC UA GUI client using Python

Imperix relies on the increasingly popular OPC UA industrial protocol to remotely

control and monitor its power electronic controllers over Ethernet. To do so, the B-

Board PRO and B-Box RCP controllers embed an OPC UA server to communicate

with the in-house monitoring software imperix Cockpit. One of the advantages of

using an open standard such as OPC UA is that it enables users to use third-party

clients to visualize data and send commands.

This page is aimed at users who wish to implement a custom OPC UA client to

interact with an imperix controller and provides guidance on how to connect to and

exchange data with the OPC UA server embedded in imperix controllers.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/software/cockpit/

What is OPC UA?

OPC Unified Architecture (UA) is an open communication standard developed by the

OPC Foundation targeting industrial automation. This Ethernet-based protocol allows

clients to remotely control OPC UA compatible devices from various vendors. OPC

UA is designed to be a secure industrial communication and supports signed and

encrypted communication as well as user authentication.

Moreover, thanks to the openness of OPC UA, a multitude of resources and libraries

are available online, allowing the user to build his own client. Here are a few of them:

Official tools and SDK from Unified Automation: High Perf C99, ANSI C, C++,

.NET C#, Java, Delphi

MATLAB Industrial Communication Toolbox, also covered on our product note

open62541: open-source C implementation

NodeOPCUA: Javascript or Typescript for NodeJS

Freeopcua Python: with a simple GUI client example made using PyQT 5

Monitoring an imperix controller using OPC UA

Imperix Cockpit, the official monitoring software to remotely control imperix

products, relies on OPC UA for most of the communication with the B-Box RCP and

B-Board PRO. Consequentially, third-party clients may perform the same actions,

including:

read and write the user variables (probe and tunable parameters) at a

frequency up to 100 Hz

enable or disable the PWM outputs

get the device status (is the code running, did a fault occur, what is the CPU

load, etc)

read the generated log messages

https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA-BBox-1.png
https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA-BBox-1.png
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.unified-automation.com/solutions.html
https://fr.mathworks.com/products/industrial-communication.html
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://open62541.org/
https://node-opcua.github.io/
https://github.com/FreeOpcUa
https://github.com/FreeOpcUa/opcua-client-gui
https://imperix.com/software/cockpit
https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/tunable-parameter

OPC UA enables different clients to interact with a B-Box controller

It must be noted that actions such as loading the user code file or a custom FPGA

bitstream file into the target or updating the target firmware can not be performed

using OPC UA. Additionally, due to complexity and performance considerations, the

scope module of Cockpit also uses an in-house protocol.

Connecting to the imperix OPC UA server

Imperix uses the default OPC UA port 4840, meaning that the OPC UA endpoint URL

to connect to a B-Box or B-Board controller is opc.tcp://<IP-ADDRESS>:4840

Screenshots from the OPC UA client UaExpert will be used as a reference, however,

the explanations apply to any other client. Using UaExpert is also a good way to test

the connection to the OPC UA server as well as to obtain a list of the available

variables and functions.

https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA_server.png
https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA_server.png
https://www.unified-automation.com/products/development-tools/uaexpert.html

Connecting to an imperix controller OPA UA server from UaExpert

Imperix system variables

Below are documented the read-only “system” OPC UA node variables that can be of

use to the user. They provide configuration and status information about the target.

These system node variables are stored in the namespace 1 and are available at all

times (contrary to user code variables described later).

https://imperix.com/doc/wp-content/uploads/2022/03/image-1.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-1.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-22-1024x323.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-22-1024x323.png

imperix controller OPA UA server variables displayed in UaExpert

Some variables are not documented because they are designed to be used

exclusively by Cockpit.

Name Datatype Description

ACG license String The loaded ACG license status

CPP license String The loaded CPP license status

CPU load
[%]

Float
User CPU load. Returns 0 when the user

code is stopped

Controller String Returns “B-Board” or “B-Box”

Core state String

“Offline”: The user code is stopped

“Blocked”, “Operating” or “Fault” when the

user code is running

Dynamic IP String The automatically assigned IP address

Hostname String The device hostname

Loaded code
MD5

String The MD5 hash of the loaded user code file

Loaded code
date

String
The last modification date of the loaded

user code file

Loaded code
name

String The name of the loaded user code file

Logs BBOS String

Returns the log messages generated by the

user code system (BBOS). It uses the

following format:

[severity][timestamp]Message
For instance:

[I][1648114327359324364]User code
started (BBOS v3.7 build
2203211046)

MAC address String The device’s MAC address

Static IP String
The default static IP. It is always

192.168.222.22

Static IP 2 String The user-configured static IP

Status String Display status similar to the B-Box screen.

“Initializing…”, “Discovering…” or

“Synchronizing…”: the device is in its

starting phase

“Ready.”: the user code can be started

“Starting…”: the user code is being started

“Running.”: a user code is running

All other messages are error messages

Temperature Float The chip temperature in degrees Celsius

User CPU
state

String “Running” or “Offline”

User log String

Returns the user-created log messages

generated using the LOG block. It uses the

following format:

[severity][timestamp]Message

Version String The firmware version of the device

Imperix methods

The following methods allow the user to interact with the target (start the code,

enable the PWM outputs) or to change system parameters (hostname, IP).

Some methods are not documented because they are designed to be used

exclusively by Cockpit.

Method

name
Argument Description

Change
hostname

new hostname Change the target hostname

Change
static IP
2

new static IP

Change the target static IP 2.

The static IP 1 is always

192.168.222.22

Enable
outputs

N/A Enable the PWM outputs

Disable
outputs

N/A Disable the PWM outputs

Set DAC

<variable name>,

<DAC channel>,

<device ID>, <gain>,

<offset>

Connect a user variable to an

analog output of the target,

similar to the DAC module of

Cockpit

Start
code

N/A Start the loaded user code.

Stop code N/A Stop the loaded user code.

User-created OPC UA variables

When a user code is started, an OPC UA variable is created for each probe variable

and tunable parameter present in the user model (Simulink, PLECS or C++). They are

stored in the namespace index 2.

The probe “Vdc” is connected to the output of an ADC block

The probe “Vdc” of the user model is available as an OPC UA variable

(UaExpert)

Going further

Making an OPC UA GUI client using MATLAB

To use MATLAB as an OPC UA client, the user may read the Industrial

Communication Toolbox tutorial. This Add-On may be combined with MATLAB App

Designer to build an HMI GUI for imperix power converters such as the one shown in

the illustration on this page.

Making an OPC UA GUI client using C++

To go on the completely free-of-cost route, we would recommend checking out the C

library open62541 and using a C++ framework such as Qt or wxWidgets to build a

GUI.

https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/tunable-parameter
https://imperix.com/doc/wp-content/uploads/2022/04/image-37.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-37.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-2.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-2.png
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://open62541.org/
https://www.qt.io/
https://www.wxwidgets.org/

Making an OPC UA GUI client using Python

To stay on the free and open-source route, developing a client using Python is also

possible thanks to Freeopcua. A GUI can be built quite easily using the popular

Python package tkinter.

Ethernet is not the only way to communicate with the imperix controllers. Indeed, the

CAN protocol is also supported thanks to the CAN input and CAN output mailboxes.

https://github.com/FreeOpcUa
https://docs.python.org/3/library/tkinter.html
https://imperix.com/doc/software/can-input-mailbox
https://imperix.com/doc/software/can-output-mailbox

