OPC UA: the communication protocol for industrial
automation applications

PN177 | Posted on March 24,2022 | Updated on May 7, 2025

Benoit STEINMANN
Software Team Leader

imperix . in

Table of Contents

e What is OPC UA?
e Monitoring_an imperix controller using OPC UA
o Connecting_to the imperix OPC UA server
o Imperix system variables
Imperix methods
o User-created OPC UA variables
e Going further
o Making.an OPC UA GUI client using MATLAB
o Making_.an OPC UA GUI client using C++
o Making_.an OPC UA GUI client using Python

(e}

Imperix relies on the increasingly popular OPC UA industrial protocol to remotely
control and monitor its power electronic controllers over Ethernet. To do so, the B-
Board PRO and B-Box RCP controllers embed an OPC UA server to communicate
with the in-house monitoring software imperix Cockpit. One of the advantages of
using an open standard such as OPC UA is that it enables users to use third-party
clients to visualize data and send commands.

This page is aimed at users who wish to implement a custom OPC UA client to
interact with an imperix controller and provides guidance on how to connect to and
exchange data with the OPC UA server embedded in imperix controllers.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/software/cockpit/

Custom OPC UA client

B-Box RCP
control platform

'-!l-l;;“’ii"' '

What is OPC UA?

OPC Unified Architecture (UA) is an open communication standard developed by the
OPC Foundation targeting industrial automation. This Ethernet-based protocol allows
clients to remotely control OPC UA compatible devices from various vendors. OPC
UA is designed to be a secure industrial communication and supports signed and
encrypted communication as well as user authentication.

Moreover, thanks to the openness of OPC UA, a multitude of resources and libraries
are available online, allowing the user to build his own client. Here are a few of them:

Official tools and SDK from Unified Automation: High Perf C99, ANSI C, C++,
.NET C#, Java, Delphi

e MATLAB Industrial Communication Toolbox, also covered on our product note
e 0pen62541: open-source C implementation

¢ NodeOPCUA: Javascript or Typescript for NodeJS

e Freeopcua Python: with a simple GUI client example made using PyQT 5

Monitoring an imperix controller using OPC UA

Imperix_Cockpit, the official monitoring software to remotely control imperix
products, relies on OPC UA for most of the communication with the B-Box RCP and
B-Board PRO. Consequentially, third-party clients may perform the same actions,
including:

e read and write the user variables (probe and tunable parameters) at a
frequency up to 100 Hz

e enable or disable the PWM outputs

e get the device status (is the code running, did a fault occur, what is the CPU
load, etc)

¢ read the generated log messages

https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA-BBox-1.png
https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA-BBox-1.png
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.unified-automation.com/solutions.html
https://fr.mathworks.com/products/industrial-communication.html
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://open62541.org/
https://node-opcua.github.io/
https://github.com/FreeOpcUa
https://github.com/FreeOpcUa/opcua-client-gui
https://imperix.com/software/cockpit
https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/tunable-parameter

N cockpIT
imperix monitoring software

[T ———————

control platform

D T o8 Custom-made GUI client
(e.g. using MATLAB App Designer)

OPC UA enables different clients to interact with a B-Box controller

It must be noted that actions such as loading the user code file or a custom FPGA
bitstream file into the target or updating the target firmware can not be performed
using OPC UA. Additionally, due to complexity and performance considerations, the
scope module of Cockpit also uses an in-house protocol.

Connecting to the imperix OPC UA server

Imperix uses the default OPC UA port 4840, meaning that the OPC UA endpoint URL
to connect to a B-Box or B-Board controller is opc.tcp://<IP-ADDRESS>:4840

Screenshots from the OPC UA client UaExpert will be used as a reference, however,
the explanations apply to any other client. Using UaExpert is also a good way to test
the connection to the OPC UA server as well as to obtain a list of the available
variables and functions.

https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA_server.png
https://imperix.com/doc/wp-content/uploads/2022/04/OPC-UA_server.png
https://www.unified-automation.com/products/development-tools/uaexpert.html

. Add Server

=
X

Configuration Name |imperix controller

Discovery Advanced

server Information

Endpaint Url |ope. top://10. 10, 10, 134:4840
Reverse Connect]

Security Settings
Security Policy Mone -

Message Security Mode | Mone -

Authentication Settings

@ Anonymous

Username Store

Password

Certificate -

Private Key

Session Settings

Session Mame

Connect Automatically

Corcel

Connecting to an imperix controller OPA UA server from UaExpert

Imperix system variables

Below are documented the read-only “system” OPC UA node variables that can be of
use to the user. They provide configuration and status information about the target.
These system node variables are stored in the namespace 1 and are available at all
times (contrary to user code variables described later).

DFPPR =2 X2 B XG
Project

& X Data Access View

v M Project # Server Node Id Display Name Value Datatype Source Timestamp Server Timestamp Statuscode
¥ [Servers 1 Imperix Controller OPC-UA Server M51[StrinalACG license ACG license Expiry: never String 0910:38.312 09:10:38.312 Good
13, Imperix Controlier GPC-UA| |2 Imperix Controller OPC-UA Server ~ NS1iStringlCPP license CPP license Expiry: never String 09:10:38312 03:10:38312 Geod
v 3 Imperix Controller OPC-UA Server NS1[String|CPU load [%] CPU load (%] 49888 Float 10:06:09.590 1006:09.590 Good
B Documents 4 Impenx Controller OPC-UA Server MS1[StringiController Controller B-Board PRO String 7 10:38.297 Good
3 Data Access View 5 Imperix Cantroller OPC-UA Server NS1[String|Core state Core state ocke: String 1501416322 151416322 Good
& Imperix Cantroller OPC-UA Server ~ NS1[StringlDynamic IP Dymamic P 10.10.10.71 String 09:10:47.502 0:10:47.502 Good
7 Imperix Controller OPC-UA Server MS1String[Hostname Hostname B-Box lab2 String 02:10:38.297 02:10:38.297 Good
§ Impenix Controller OPC-UA Server NS1[StringlLoaded codeMD5 Loaded code MDS cfdeschf00eTa31b38d3eSbb... String 151415000 131415020 Good
9 impenx Controller OPC-UA Server N51[tringlLosded code date Loaded code date 12 Apeil 2022 14:05:41 String 1514:13.020 151415020 Good
10 Impesix Controller OPC-UA Server N51[StringlLoaded code name Loaded code name single_phase inverter.eff String 15c14:15.020 151415020 Good
11 Imperix Controller OPC-UA Server N51[StringlLogs B80S Logs BBOS. [1649769256324910544]Use... String 151418321 15:1418.321 Good
12 Imperix Cantroller OPC-UA Server ~ NS1[StringIMAC address MAC address BEE1C:CCAE String 00:10:38.297 08:10:38.297 Good
13 imperx Controller OPC-UA Server N5 [StringfStatic IP Static [P 192.168.222.22 String 09:1:38.297 05:10:38.297 Good
14 imperix Cantroller OPC-LIA Server P2 Static IP 2 192.168.222123 String 09:10:38.207 02:10:38.297 Good
15 Imperix Controller OPC-UA Server Status Running String 15:14:16.421 131416421 Good
K 2|16 Impenx Controller OPC-UA Server NS1[StrinalTemperature Temperature 66,5651 Float 10:06:10.090 10:06:10.090 Good
17 impesix Cantroller OPC-UA Server CPU state User CPU state Running String 181416322 151416322 Good
Address Space & X |15 imperx Controller OPC-UA Server iog User log String 10:05:26.340 1005:26.340 Good
P 5 | |19 imper Contreller OPC-UA Serves g Version 37.220401085 Sring 09:10:38.297 00:10:38297 Goed
D Root A
v 3 Objects

@ ACG license

https://imperix.com/doc/wp-content/uploads/2022/03/image-1.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-1.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-22-1024x323.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-22-1024x323.png

imperix controller OPA UA server variables displayed in UaExpert

Some variables are not documented because they are designed to be used
exclusively by Cockpit.

Name Datatype | Description

ACG license String The loaded ACG license status

CPP license String The loaded CPP license status

CPU load Float User CPU load. Returns 0 when the user
[%] code is stopped

Controller String Returns “B-Board” or “B-Box”

“Offline”: The user code is stopped
Core state String “Blocked”, “Operating” or “Fault” when the
user code is running

Dynamic IP String The automatically assigned IP address
Hostname String The device hostname
Loaded code
VDS c String The MD5 hash of the loaded user code file
Loaded code) The last modification date of the loaded
String
date user code file
Loaded code
String The name of the loaded user code file
name
Returns the log messages generated by the
user code system (BBOS). It uses the
following format:
severity][timestamp]Message
Logs BBOS String [V ity][ti Pl &
For instance:
[I][1648114327359324364]User code
started (BBOS v3.7 build
2203211046)
MAC address String The device's MAC address
Static Ip Strin The default static IP. It is always
1
9 192.168.222.22
Static IP 2 String The user-configured static IP
Status String Display status similar to the B-Box screen.

n oo

“Initializing...”, “Discovering...” or
“Synchronizing...”: the device is in its

starting phase

“Ready.”: the user code can be started
“Starting...”: the user code is being started
“Running.”: a user code is running

All other messages are error messages

Temperature Float The chip temperature in degrees Celsius
User CPU

String “Running” or “Offline”
state

Returns the user-created log messages
generated using the LOG block. It uses the

U 1 Strin
Ser 208 g following format:
[severity][timestamp]Message
Version String The firmware version of the device

Imperix methods

The following methods allow the user to interact with the target (start the code,
enable the PWM outputs) or to change system parameters (hostname, IP).

Some methods are not documented because they are designed to be used
exclusively by Cockpit.

Method _—
Argument Description
name
Change
new hostname Change the target hostname
hostname
Change Change the target static IP 2.
static IP new static IP The static IP 1 is always
2 192.168.222.22
Enable
N/A Enable the PWM outputs
outputs
Disable)
N/A Disable the PWM outputs
outputs
<variable name>, Connect a user variable to an
Set DAC <DAC channel>, analog output of the target,
<device ID>, <gain>, | similar to the DAC module of
<offset> Cockpit

Start

ar N/A Start the loaded user code.
code
Stop code N/A Stop the loaded user code.

User-created OPC UA variables

When a user code is started, an OPC UA variable is created for each probe variable
and tunable parameter present in the user model (Simulink, PLECS or C++). They are
stored in the namespace index 2.

sim BBO Vdc
CH4

The probe “Vdc” is connected to the output of an ADC block

Data Access View

Server Node Id Display Name Value Datatype Source Timestamp Server Timestamp Statuscode

1 imperix controller NS1|String|User CPU state User CPU state Running String 11:00:02.350 11:00:02.350 Good
2 imperix controller WS2|String[Vdc Vdc -0.000915527 Float 11:00:31.659 11:00:31.659 Good

The probe “Vdc” of the user model is available as an OPC UA variable
(UaExpert)

Going further

Making an OPC UA GUI client using MATLAB

To use MATLAB as an OPC UA client, the user may read the Industrial
Communication Toolbox tutorial. This Add-On may be combined with MATLAB App
Designer to build an HMI GUI for imperix power converters such as the one shown in
the illustration on this page.

Making an OPC UA GUI client using C++

To go on the completely free-of-cost route, we would recommend checking out the C
library open62541 and using a C++ framework such as Qt or wxWidgets to build a
GUL.

https://imperix.com/doc/software/probe-variable
https://imperix.com/doc/software/tunable-parameter
https://imperix.com/doc/wp-content/uploads/2022/04/image-37.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-37.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-2.png
https://imperix.com/doc/wp-content/uploads/2022/03/image-2.png
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://imperix.com/doc/implementation/opc-ua-toolbox-for-matlab-and-simulink
https://open62541.org/
https://www.qt.io/
https://www.wxwidgets.org/

Making an OPC UA GUI client using Python

To stay on the free and open-source route, developing a client using Python is also
possible thanks to Freeopcua. A GUI can be built quite easily using the popular
Python package tkinter.

Ethernet is not the only way to communicate with the imperix controllers. Indeed, the
CAN protocol is also supported thanks to the CAN input and CAN output mailboxes.

https://github.com/FreeOpcUa
https://docs.python.org/3/library/tkinter.html
https://imperix.com/doc/software/can-input-mailbox
https://imperix.com/doc/software/can-output-mailbox

