
Motor Testbench quick start guide

PN181 | Posted on November 14, 2022 | Updated on June 10, 2025

Simon STROBL

Product Director

•

Table of Contents

Setting up the motor testbench

Wiring the motor testbench to the power stage

Wiring of the control stage

Commissioning the motor testbench

Safety considerations

Test 1: no load test in open-loop

Test 2: load test

To go further…

… with the motor testbench

… with the motor interface

This page explains how to get started with the motor drive bundle and the motor

testbench. It provides a comprehensive overview of the hardware configuration and

step-by-step instructions to commission the equipment.

The bundle includes all the necessary equipment to operate the induction machine (IM)

and the permanent magnet synchronous machine (PMSM) in a back-to-back

configuration. It covers the entire motor-drive system from the digital controller to the

power stage and the motors. In this type of setup, one machine can serve as the device

under test (DUT), while the other one acts as a programmable mechanical load. The

current page covers only the default configuration of the bundle, but a wide range of

topologies can be explored thanks to the flexibility of imperix’s solutions. For more

details on other possible topologies, please refer to the page How to build a variable

speed drive.

https://www.linkedin.com/in/simon-s-9723ab21a
https://imperix.com/products/electric-motor-drive-bundle/
https://imperix.com/doc/help/variable-speed-drive
https://imperix.com/doc/help/variable-speed-drive


Default configuration of the motor drive bundle

Setting up the motor testbench

The default content of the electric motor drive bundle is listed below:

Programmable controller (B-Box RCP)

Motor Interface for B-Box RCP

ACG SDK toolbox for automated generation of the controller code from Simulink or

PLECS

6x phase-leg modules (PEB8038)

Motor Testbench, including an induction machine and a permanent magnet

synchronous machine (see the datasheet)

Reversible DC source (third-party)

All necessary RJ45 and fiber optic cables

Laboratory safety cables (similar to this one)

The knowledge base provides multiple turn-key code examples for the default

configuration of the motor drive bundle. If the user makes any modifications to the

wiring schemes shown in this quick start guide, the code examples must be modified

accordingly.

Wiring the motor testbench to the power stage

By default, imperix pre-wires the power stage as two inverters with a shared DC bus, as

shown in the image below. With this topology, one machine operates as a motor and the

other one as a generator. The power circulates in a loop through the DC bus and the

shaft, and the DC source compensates for the losses of the system.

https://imperix.com/doc/wp-content/uploads/2022/11/Integration-dual-drive-cabinet.png
https://imperix.com/doc/wp-content/uploads/2022/11/Integration-dual-drive-cabinet.png
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/wp-content/uploads/document/Motor_interface_Datasheet.pdf
http://imperix.com/software/acg-sdk
https://imperix.com/products/power/half-bridge-module/
https://cdn.imperix.com/wp-content/uploads/document/Motor_testbench_Datasheet.pdf
https://imperix.com/products/control/accessories/#cables
https://www.distrelec.ch/en/safety-test-lead-2m-black-1kv-nickel-plated-staeubli-electrical-connectors-28-0125-20021/p/30136329


Default topology of the power stage

The DC bus is already connected to the DC source out of the box. However, the user

must connect the machines to the cabinet themselves, as the motor testbench is

shipped on a separate pallet. The image on the right illustrates how to connect the

machines to their respective inverter. (Note: the center point of the windings of the IM

(blue connector) is left unconnected in the topology considered on this page).

Additionally, the built-in brake of the PMSM must be connected to the brake control unit

of the motor interface. Make sure to observe the polarity of the brake.

The cabinet and the motor testbench must be connected to the earth to ensure the

electrical safety of the system and optimal EMC performance. Additionally, earthing

cables should be as short as possible and connected to a common ground to avoid

ground loops.

https://imperix.com/doc/wp-content/uploads/2022/11/Shared-DC-link.png
https://imperix.com/doc/wp-content/uploads/2022/11/Shared-DC-link.png


Wiring of the power stage and earthing connection.

The third-party DC source included in the bundle ships with a 400V/32A IEC60309 plug

(3P+N+PE). Additionally, the auxiliary power is supplied through a 230V/10A plug.

Equivalent cables are provided depending on the destination country.

Wiring of the control stage

The B-Box controller generates the control signals for the converter (PWM gate signals),

based on measured feedbacks (motor currents and DC bus voltage). The gate signals

are transmitted to the PEB 8038 modules through optical fibers, whereas the motor

currents and the DC bus voltage – measured by the sensors embedded on the PEB 8038

modules – are fed back to the controller through RJ45 cables. The following schematics

indicate the assignation of the analog and PWM channels (pre-wired out of the box).

https://imperix.com/doc/wp-content/uploads/2022/11/armoire-motor-test-bench_Back-1.png
https://imperix.com/doc/wp-content/uploads/2022/11/armoire-motor-test-bench_Back-1.png


Channel assignation on the B-Box

Channel assignation on the converter rack

The figure below illustrates how to wire the measurements from the motor testbench to

the motor interface box. The green cable of the PMSM, that combines the resolver and

temperature measurements, goes in connector X7, and the temperature measurement of

the IM (grey cable) goes to the connector X2. Finally, the torque sensor must be

connected to X5.

Connection of the motor measurements to the Motor Interface

https://imperix.com/doc/wp-content/uploads/2022/11/B-Box_labelling.jpg
https://imperix.com/doc/wp-content/uploads/2022/11/B-Box_labelling.jpg
https://imperix.com/doc/wp-content/uploads/2022/11/Rack_labelling.jpg
https://imperix.com/doc/wp-content/uploads/2022/11/Rack_labelling.jpg
https://imperix.com/doc/wp-content/uploads/2022/11/Motor-Interface-Front-2.png
https://imperix.com/doc/wp-content/uploads/2022/11/Motor-Interface-Front-2.png


The motor interface is connected to the B-Box through VHDCI Inputs (B) with the

provided cable.

Connecting the motor interface to the B-Box

An emergency stop button can be connected to the motor interface through its

INTERLOCK input. This button is optional and not included with the interface. If not used,

it must be replaced by the included dummy plug to avoid reporting a fault to the B-Box

(please refer to the motor interface datasheet for more details).

Commissioning the motor testbench

The motor testbench is a complex system to drive with multiple converters, control

loops, and mechanical elements. Thus, imperix recommends proceeding step-by-step to

simplify the commissioning.

The B-Box controller can be programmed either in C++ or with Automated Code

Generation (ACG) tools from Simulink and PLECS. In this section, the code examples are

implemented with Simulink. If you are not familiar with the code generation feature of

Simulink, please refer to the Getting started with ACG SDK on Simulink. In any case,

make sure to install the latest version of ACG SDK beforehand, available for download at

imperix.com/downloads/.

Safety considerations

Before starting any experiment, it is essential to take all necessary precautions to

operate the system safely. Please observe the safety measures detailed in the panes

below.

Configure the overcurrent and overvoltage protections

To ensure that the ratings of the power converter and machines are never exceeded, the

hardware protection limits of the B-Box RCP need to be configured properly. A detailed

https://imperix.com/doc/wp-content/uploads/2022/11/B-Box_Motor-Interface.png
https://imperix.com/doc/wp-content/uploads/2022/11/B-Box_Motor-Interface.png
https://imperix.com/wp-content/uploads/document/Motor_interface_Datasheet.pdf
https://imperix.com/doc/help/getting-started-acg-sdk-simulink
https://imperix.com/downloads/


explanation of how to compute these limits is given on the page Analog front-end

configuration on B-Box RCP.

For the PMSM, the overcurrent protection threshold is set to 1.2 p.u. or 19 A (peak

value). It leaves enough margin for the controller to regulate the currents when the

machine is operated close to its nominal conditions. For the IM, the V/f control

technique leads to a large start-up current due to the discontinuity of the V/f profile at

low speed. Thus, the overcurrent protection has to be set to 2.5 p.u. or 30 A (peak value).

Additionally, the DC bus overvoltage protection is set to 830V. Please note that the lower

limit is set to -20V on the DC bus to avoid tripping the protection while the bus is

discharged. The table below gives the complete configuration of the analog front-end of

the B-Box according to the aforementioned limits.

Measured

signal

Input

channel

number

Low

impedance

Programmable

Gain
Filter

Limit

high

[V]

Limit

low

[V]

Disable

safety

0,1,2 no x4 no 6.0 -6.0 no

3,4,5 no x8 no 7.6 -7.6 no

6 no x2 no 8.2 -0.2 no

Analog inputs configuration

The analog input protections have a tolerance of ±0.2V. For example, the limit high of the

DC bus voltage is 8.2V in the previous table. However, the actual protection can be

tripped anywhere between 8.0V and 8.4V. Considering the programmable gain and the

sensitivity of the voltage sensor (PEB8038), this translates to 810-850V on the DC bus. It

is essential to take tolerance into account when setting protection limits.

Secure the motor testbench against unwanted movements

The motor testbench must be horizontally installed on a vibration-free and rigid

structure. It must be secured against unwanted movements caused by the vibrations of

the machines.

Don’t remove the protective covers

Transparent acrylic plates surround the shaft to prevent accidental access while the

machines are spinning and protect against flying parts in case of mechanical failure. Do

not operate the motor testbench without the protective covers.

Release the mechanical brake

By default, the brake is active and locks the shaft. Supplying the brake’s coil with 24V

releases the mechanism. Deactivating or reactivating the brake emits a very distinctive

Is,im

Is,pmsm

Vdc

https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp


and audible sound. The motor interface has a brake control unit to supply 24V to the coil

whenever needed. In Simulink, the brake can be released using the BRK -Brake block.

It is essential to release the brake before operating the motors since the induction

machine has its cooling fan attached to its rotor and may overheat when the rotor is

blocked. Blocked rotor tests can be carried out with the brake applied, but this requires

extra care to be taken when running the test to prevent any damage to the machine.

Limit the DC source output current

The laboratory DC source from the motor bundle can limit its output current to avoid

damaging its load. In the topology considered on this page, the DC source only

compensates for the losses and does not require a high output current in steady-state.

However, the source needs enough margin to regulate the DC bus voltage under load.

Setting the limits to ±5A leaves enough margin for regulation while protecting the DC

bus capacitors from excessive inrush currents.

Test 1: no load test in open-loop

Many control techniques rely on a position sensor to accurately estimate the position of

the rotor flux. It is also possible to calculate the angular speed by computing the

derivative of the position and using it for closed-loop speed regulation. For this reason, it

makes sense to check the correct operation of the resolver first. The Simulink model

provided below implements an open-loop V/f control of the IM that sets its speed to a

known value without relying on a speed measurement. Additionally, to avoid slowing

down the rotor, the PMSM is not supplied (no load test). More details on the control can

be found in V/f control of an induction machine.

The code example uses Simscape Electrical to model the motor testbench. Matlab

R2023a (or later) is required to run the model in simulation mode.

TN138_Motor_TB_no_load_test_powerlibDownload

Overview of the Simulink control file for the open-loop V/f test

Loading the code and setting up the workspace in Cockpit

https://imperix.com/doc/software/brake-interface
https://imperix.com/doc/implementation/vf-control-induction-machine
https://imperix.com/doc/wp-content/uploads/2025/06/TN138_Motor_TB_no_load_test_powerlib.zip
https://imperix.com/doc/wp-content/uploads/2025/06/TN138_Motor_TB_no_load_test_powerlib.zip
https://imperix.com/doc/wp-content/uploads/2023/07/simulink-top-view-open-loop-Vf-v2-1024x341.png
https://imperix.com/doc/wp-content/uploads/2023/07/simulink-top-view-open-loop-Vf-v2-1024x341.png


1. Open the Simulink model and set the mode to Automated Code Generation in the

CONFIG block.

2. Build the model (Ctrl + B). It will automatically launch Cockpit.

3. Set the target IP in Cockpit and click on Create to generate a new project.

4. Add a new rolling plot module and drag-&-drop the Vdc variable to monitor the DC

bus voltage.

5. Add a subplot to the rolling plot, and drag and drop the rpm_im variable. Using a

rolling plot rather than a scope allows for monitoring the speed over a long period

of time.

6. Add a new scope module and drag-&-drop the Is_a_im, Is_b_im, and Is_c_im

variables. The scope can display each and every sample made available to the

control.

7. Add a new variables module and drag-&-drop the desired_speed and speed_rate

variables. This way, the main parameters of the speed control are easy to find.

Step-by-step test procedure

1. Turn on the laboratory DC source and gradually increase the DC bus voltage from 0

to 300V. Check with Cockpit that Vdc matches the voltage of the source.

2. Check that the release_brake variable is set to ‘1’ (= brake released). The brake LED

should turn orange on the motor interface when the brake is released.

3. Check that desired_speed = 500 rpm and speed_rate = 1000 rpm/s.

4. Enable the PWM outputs from Cockpit and observe the rotation of the shafts. The

use of flexible couplings allows a small misalignment of the shafts. As a result, the

torque sensor has some backlash by design and can vibrate a little bit.

5. Compare the speed measurement rpm_im with the speed reference

desired_speed. The actual speed should be close to the reference due to the

absence of load.

6. Disable the PWM outputs and increase the DC bus voltage to 800V.

7. Enable the PWM outputs again and gradually increase desired_speed to 1464 rpm

(nominal speed). Again, compare rpm_im with desired_speed.

8. Try rotating the machine in the reverse direction, by setting desired_speed down to

-1464 rpm. Check that the speed measurement also works for negative speeds.

9. At the end of the experiment, disable the PWM outputs first, and then reduce the

output of the DC source to 0 V. Double-check in Cockpit that the DC bus is fully

discharged.

The screenshot below shows how the workspace could look in the end, while running the

test procedure.



Running the no-load test using Cockpit

Test 2: load test

After validating the correct functioning of the resolver, the position measurement can be

used by the control. For example, the Simulink model below implements a Field-Oriented

Control (FOC) of the PMSM (see TN111 for more details). The goal is to load the IM and

operate the motor testbench under nominal conditions. Additionally, the V/f control has

been upgraded with a closed-loop speed controller for improved disturbance rejection.

Operating the machines under load also gives the opportunity to check the torque and

temperature sensors.

The code example uses Simscape Electrical to model the motor testbench. Matlab

R2023a (or later) is required to run the model in simulation mode.

TN138_Motor_TB_load_testDownload

https://imperix.com/doc/wp-content/uploads/2022/11/cockpit-workspace-open-loop-big.png
https://imperix.com/doc/wp-content/uploads/2022/11/cockpit-workspace-open-loop-big.png
https://imperix.com/doc/implementation/field-oriented-control-of-pmsm
https://imperix.com/doc/wp-content/uploads/2025/06/TN138_Motor_TB_load_test_param.zip
https://imperix.com/doc/wp-content/uploads/2025/06/TN138_Motor_TB_load_test_param.zip


Overview of the Simulink control file for the closed-loop V/f under load test

Loading the code and setting up the workspace in Cockpit

1. Open the Simulink model and set the mode to Automated Code Generation in the

CONFIG block.

2. Build the model (Ctrl + B). This will automatically launch Cockpit.

3. Set the target IP in Cockpit and click on Create to generate a new project.

4. Add a new rolling plot module and drag-&-drop the Vdc variable to monitor the DC

bus voltage.

5. Add a subplot to the rolling plot, and drag and drop the rpm_im and rpm_ref_im

variables.

6. Add another subplot to the rolling plot, and drag and drop the Tem_pmsm,

Tem_ref_pmsm, and measured_torque_raw variables.

7. Add another subplot to the rolling plot, and drag and drop temperature_im and

temperature_pmsm.

8. Add a new scope module and drag-&-drop the Is_a_im, Is_b_im, and Is_c_im

variables.

9. Add a subplot to the scope and drag-&-drop the Is_a_pmsm, Is_b_pmsm, and

Is_c_pmsm variables.

10. Add a new variables module and drag-&-drop the following variables:

desired_speed, speed_rate, desired_torque, torque_rate, block_rotor,

mechanical_angle, and angle_offset.

Torque and temperature measurements

The code example uses the theoretical sensitivity and offset of the torque sensor (53.3

mV/Nm and 5V, respectively). For optimal results, the sensor should be calibrated.

Additionally, the backlash given to the sensor by the flexible couplings results in little

https://imperix.com/doc/wp-content/uploads/2022/11/simulink-top-view-closed-loop-Vf.png
https://imperix.com/doc/wp-content/uploads/2022/11/simulink-top-view-closed-loop-Vf.png


vibrations that appear in the torque measurement as small oscillations at the

mechanical frequency of the rotor. A low-pass filter might prove helpful to filter out the

vibrations. To this end, the code example includes the raw

value measured_torque_raw and its filtered version measured_torque_filtered.

In addition to the torque, the temperature of the stator windings is available through the

temperature_im and temperature_pmsm probes.

Calibration of the PMSM’s rotor position

The built-in resolver of the PMSM measures the absolute position of the rotor. However,

there is no guarantee that the sensor is aligned with the poles of the machine.

Calibrating the rotor angle is essential to orient the field with a FOC control.

The Simulink model includes a calibration procedure that applies a DC current in phase

A of the machine to force the alignment of the rotor and stator fluxes. The offset on the

angle measurement can then be compensated.

1. Turn on the laboratory DC source and gradually increase the DC bus voltage from 0

to 50V. Check with Cockpit that Vdc matches the voltage of the source.

2. Check that the release_brake variable is set to ‘1’ (= brake released). The brake LED

should turn orange on the motor interface when the brake is released.

3. Set block_rotor to ‘1’ and enable the PWM outputs. The control code will apply a DC

current in phase A of the PMSM. As a result, the rotor aligns itself on phase A.

4. At that moment, the value of mechanical_angle corresponds to the offset between

the position measurement and the actual location of , the absolute rotor

angle.

5. Set the initial value of angle_offset equal to mechanical_angle directly in the

Simulink model. Disable the PWM outputs and regenerate the code (Ctrl + B). After

this manipulation, the control code keeps compensating the offset permanently.

Since the PMSM has four pairs of poles, four mechanical positions correspond to

. Any of these positions can be used as the angle offset. Additionally, the angle

offset is a constant value. Thus, the calibration procedure needs to be performed only

once.

Step-by-step test procedure

1. Turn on the laboratory DC source and gradually increase the DC bus voltage from 0

to 300V. Check with Cockpit that Vdc matches the voltage of the source.

2. Check that the release_brake variable is set to ‘1’ (= brake released). The brake LED

should turn orange on the motor interface when the brake is released.

3. Check that desired_speed = 500 rpm and speed_rate = 1000 rpm/s.

4. Enable the PWM outputs from Cockpit and check that rpm_im and Tem_pmsm

follow their respective references.

5. Check the reading measured_torque_raw from the torque sensor. It should be non-

zero even after calibration since the weight of the shaft elements and the friction

θr = 0 rad

θr = 0 rad



at the bearings’ level act as a passive mechanical load.

6. Set desired_torque to 5 Nm and verify that Tem_pmsm follows the new reference.

Check that measured_torque_raw increases from 5 Nm.

7. Disable the PWM outputs and increase the DC bus voltage to 800V. Set

desired_torque back to 0 Nm.

8. Enable the PWM outputs again and gradually increase the desired_speed to 1464

rpm.

9. Gradually increase desired_torque to 22.8 Nm. Check that measured_torque_raw

increases accordingly. At this point, the motor testbench is operating at its nominal

power of 3.5 kW.

10. Memorize the values of temperature_im and temperature_pmsm. Then, let the

motor testbench run at nominal power for 5 to 10 minutes. You should observe the

temperature of the machines increasing from several degrees.

11. At the end of the experiment, disable the PWM outputs first, and then reduce the

output of the DC source to 0 V. Double-check in Cockpit that the DC bus is fully

discharged.

The screenshot below shows how the workspace could look in the end, while running the

test procedure.

Running the load test using Cockpit

To go further…

… with the motor testbench

The knowledge base presents standard control techniques for both the IM and the

PMSM, such as:

V/f Control of an induction machine (with turn-key code example)

https://imperix.com/doc/wp-content/uploads/2022/11/cockpit-workspace-closed-loop-big-extra-measurements.png
https://imperix.com/doc/wp-content/uploads/2022/11/cockpit-workspace-closed-loop-big-extra-measurements.png
https://imperix.com/doc/implementation/vf-control-induction-machine


Rotor Field-Oriented Control of an induction machine (with turn-key code example)

Field-Oriented Control of a PMSM (with turn-key code example)

Direct Torque Control of a PMSM

Testing various control techniques is not the only purpose of the motor testbench. It can

also serve as a reduced-scale prototype, functionally equivalent to a real-life system. The

following articles present two examples of such applications:

Electric car motor control

Wind turbine generator control

… with the motor interface

The motor interface supports different position sensors, allowing the option to replace

the motor testbench with another set of machines. The functionalities of the motor

interface are available through the ACG and CPP SDKs. Since they are part of the imperix

library, they do not require any additional installation procedure.

When using the Simulink or PLECS blocksets, the blocks specific to the Motor Interface

are used like any other blocks. They mostly hide the hardware layer and provide only

information relevant to the control, such as decoded angle of a machine, temperature

measurements in °C, etc. More details can be found in the software documentation:

INC – Incremental encoder

RES – Resolver

HAL – Hall sensor

S/C – Sin/cos encoder

TMP – Temperature sensor

TRQ – Torque sensor

BRK – Brake

https://imperix.com/doc/implementation/rotor-field-oriented-control
https://imperix.com/doc/implementation/field-oriented-control-of-pmsm
https://imperix.com/doc/example/direct-torque-control
https://imperix.com/doc/example/electric-car-motor-control
https://imperix.com/doc/example/wind-turbine-generator-control-using-a-sensorless-algorithm
https://imperix.com/software/acg-sdk/
https://imperix.com/software/cpp-sdk/
https://imperix.com/doc/software/incremental-encoder-interface
https://imperix.com/doc/software/motor-resolver-interface
https://imperix.com/doc/software/hall-sensor-motor-interface
https://imperix.com/doc/software/sin-cos-encoder-interface
https://imperix.com/doc/software/temperature-sensor
https://imperix.com/doc/software/torque-sensor-interface
https://imperix.com/doc/software/brake-interface

