
CLK - Clock generators

SD002 | Posted on April 2, 2021 | Updated on May 27, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Simulink block

Signal specification

Standard parameters

Advanced parameters

PLECS block

Signal specification

Standard parameters

Advanced parameters

C++ functions

The B-Box RCP and B-Board PRO digital controllers hold 4 clock generators, which provide

time-bases to use with various peripherals such as the PWMs and the control task routine. In a

multi-device configuration, the clocks are propagated to all the devices and stay synchronized

within ±2 ns.

Features:

Variable frequency: the clock generators support glitch-less reconfiguration during

execution as explained in Variable frequency operation with the B-Box/B-Board (PN121).

Synchronization: in a multi-device configuration, all clock generators are intrinsically

synchronized.

Simultaneous reset: all the clock generators are reset at the same time. It implies that, if

the frequency of a clock generator is a multiple of another one, they are guaranteed to

stay in phase (e.g. 20kHz and 40 kHz).

Simulink block

A CLK block using CLOCK_0 is already embedded in the CONFIG block. See CONFIG – Interrupt

configuration to learn more.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/help/variable-frequency-operation
https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/software/config-control-task-configuration

Signal specification

The output can be wired to a PWM block input signal > to set its switching frequency.

The input is only visible if the variable parameter is selected and it sets the frequency

of the clock during real-time execution.

Standard parameters

Clock ID selects which clock generator to configure. (CLOCK_0 is already used by the

CONFIG block and cannot be instantiated in a separate clock block.)

Initial clock frequency configures the frequency of the clock in Hertz (Hz). If the

desired frequency is not achievable (because of the peripheral resolution of 4 ns), the

clock frequency is replaced by the closest achievable frequency and a warning is

generated in BB Control utility software.

This value is overwritten by the input signal value during run-time if the frequency is

configured as Variable. In simulation, this value is used as the initial value during the

first clock period.

Advanced parameters

Frequency value the option “variable frequency“ enables the reconfiguration of the

clock frequency during real-time execution using the input signal.

Frequency limits sets the minimal and maximal frequencies that the clock generator

uses as saturation points.

PLECS block

https://imperix.com/doc/wp-content/uploads/2024/02/image-35.png
https://imperix.com/doc/wp-content/uploads/2024/02/image-35.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-86.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-86.png

A CLK block using CLOCK_0 is already embedded in the CONFIG block. See CONFIG – Interrupt

configuration to learn more.

Signal specification

The output can be wired to a PWM block input signal > to set its switching frequency.

The input is only visible if the frequency value is set as variable frequency and it sets

the frequency of the clock during real-time execution.

Standard parameters

Clock ID selects which clock generator to configure. (CLOCK_0 is already used by the

CONFIG block and cannot be instantiated in a separate clock block.)

Initial clock frequency configures the frequency of the clock in Hertz (Hz). If the

desired frequency is not achievable (because of the peripheral resolution of 4 ns), the

clock frequency is replaced by the closest achievable frequency and a warning is

generated in BB Control utility software.

This value is overwritten by the input signal value during run-time if the frequency is

configured as Variable. In simulation, this value is used as the initial value during the

first clock period.

Advanced parameters

Frequency value the option “variable frequency“ enables the reconfiguration of the

clock frequency during real-time execution using the input signal.

Frequency limits sets the minimal and maximal frequencies that the clock generator

uses as saturation points.

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/wp-content/uploads/2021/04/image-90.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-90.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-85.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-85.png

C++ functions

Clock_SetFrequency — Configure the clock frequency

void Clock_SetFrequency(tClock clock, float freq);Code language: C++ (cpp)

Configures the frequency of the clock in Hertz (Hz).

If the desired frequency is not achievable (because of the peripheral resolution of 4 ns), the

clock frequency is replaced by the closest achievable frequency and a warning is generated in

BB Control utility software.

This routine has to be called in UserInit(). It can also be called in the interrupt if the clock

has been set as real-time tunable using Clock_ConfigureAsRealTimeTunable().

Parameters

clock: the clock to configure (CLOCK_0, CLOCK_1, CLOCK_2 or CLOCK_3)

freq: the clock frequency in Hertz (Hz)

Clock_SetPeriod — Configure the clock period

void Clock_SetPeriod(tClock clock, unsigned int period);Code language: C++ (cpp)

Configures the period of the clock in ticks (1 tick = 4 ns).

It can be used in place of the standard Clock_SetFrequency() to configure the frequency of

the clock such as: .

It has to be called in UserInit(). It can also be called in the control interrupt routine if the

clock has been set as real-time tunable using Clock_ConfigureAsRealTimeTunable().

Parameters

clock: the clock to configure (CLOCK_0, CLOCK_1, CLOCK_2 or CLOCK_3)

period: the period of the clock in ticks (1 tick = 4 ns). The maximal value is 65635.

Clock_SetPrescaler — Configure the clock prescaler

void Clock_SetPrescaler(tClock clock, unsigned int prescaler);Code language: C++ (cpp)

Configures the prescaler of the clock.

It can be used in place of the standard Clock_SetFrequency() to configure the frequency of

the clock such as: .

It has to be called in UserInit(). It can also be called in the control interrupt routine if the

clock has been set as real-time tunable using Clock_ConfigureAsRealTimeTunable().

Parameters

clock: the clock to configure (CLOCK_0, CLOCK_1, CLOCK_2 or CLOCK_3)

frequency =
1

period × prescaler × 4 ns

frequency =
1

period × prescaler × 4 ns

prescaler: the prescaler of the clock. The maximal value is 65635.

Using prescaler=0 sets the prescaler to 1 and is therefore equivalent to prescaler=1.

Clock_ConfigureAsRealTimeTunable — Enable variable frequency operation

void Clock_ConfigureAsRealTimeTunable(tClock clock);Code language: C++ (cpp)

Enables the reconfiguration of the clock frequency during real-time execution. In other words it

allows using Clock_SetFrequency(), Clock_SetPeriod() or Clock_SetPrescaler() in the

control interrupt routine.

Parameters

clock: the clock to configure (CLOCK_0, CLOCK_1, CLOCK_2 or CLOCK_3)

