
ADC - Analog data acquisition

SD003 | Posted on April 2, 2021 | Updated on July 24, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Simulink block

Signal specification

Parameters

PLECS block

Signal specification

Parameters

C++ functions

Standard functions

Advanced functions for oversampling

Example of use

The ADC block is used to retrieve the measurements from the analog inputs of an imperix controller.

This help documentation deals with the software part of the analog data acquisition. To set-up the hardware part, please refer to the

following documents:

Analog front-end configuration on B-Box RCP (PN105)

B-Box RCP datasheet (PDF)

B-Board PRO datasheet (PDF)

Note on sampling: The sampling instant is the same for all the analog inputs, across all devices (when in a multi-devices

configuration). The sampling is, by design, linked to the same clock generator as the interrupt and is configured using the CONFIG

block. See CONFIG – Interrupt configuration to learn more.

Simulink block

Signal specification

The output signal returns a single-precision floating-point value representing the measured quantity in its physical unit (e.g.

Volts, Amperes).

The sim input signal is used in simulation and documented in Simulation essentials with Simulink (PN135).

The > input signal needs to be connected to the CONFIG block in order to account for the exact sampling instant in simulation.

Parameters

Device ID selects which B-Box/B-Board to address when used in a multi-device configuration.

Input channel(s) (vectorizable) selects which physical input channel to read from (e.g. 0 to 15 on B-Box RCP).

Sensor

Sensitivity (vectorizable) is the sensor sensitivity in Volts per measured unit (e.g. V/V for a voltage sensor and V/A for a

current sensor).

Output offset(s) (vectorizable) compensates for the sensor offset. It is expressed in Volts at the output of the sensor.

Acquisition

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/wp-content/uploads/document/B-Box_Datasheet.pdf
https://imperix.com/wp-content/uploads/document/B-Board_Datasheet.pdf
https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/help/simulation-essentials-simulink
https://imperix.com/doc/wp-content/uploads/2024/02/image-36.png
https://imperix.com/doc/wp-content/uploads/2024/02/image-36.png

Programmable gain value must match the configuration set on the frontpanel of the B-Box.

Match B-Box Micro and B-Board input full-scale must be checked if the device is a B-Box Micro B-Board PRO. It forces

the programmable analog gain to x2, to account for the +/- 5V input full-scale (as opposed to +/- 10V on the B-Box RCP).

Sampling

Synchronous averaging configures the block to output the average ADC value over 1 or 2 periods of CLOCK_0.

See Synchronous averaging (PN124) for more details.

Multiple samples per period (ADC history) configures the block to output a vector of the N last values, as documented

in Oversampling (PN154). This option is mutually exclusive with the synchronous averaging.

https://imperix.com/doc/help/synchronous-averaging
https://imperix.com/doc/help/oversampling
https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-1.png
https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-1.png
https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-2.png
https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-2.png

PLECS block

Signal specification

The output signal returns a single-precision floating-point value representing the measured quantity in its physical unit (e.g.

Volts, Amperes).

The target inport (only visible at the atomic subsystem level) is used in simulation and documented in Simulation essentials

with PLECS (PN137).

The > input signal needs to be connected to the CONFIG block to account for the exact sampling instant in simulation.

Parameters

Addressing

Device ID selects which B-Box/B-Board to address when used in a multi-device configuration.

Input channel (vectorizable) selects which physical input channel to read from (e.g. 0 to 15 on B-Box RCP).

Sensor and Acquisition parameters

Use/load sensor parameters loads the parameters of an imperix sensor.

Sensor sensitivity (vectorizable) is the sensor sensitivity in Volts per measured unit (e.g. V/V for a voltage sensor and V/A

for a current sensor).

Sensor output offset (vectorizable) compensates for the sensor offset. It is expressed in Volts at the output of the sensor.

Programmable gain value must match the configuration set on the frontpanel of the B-Box RCP. If the device is a B-Box

Micro or a B-Board PRO, it must be set to x2, to account for the +/- 5V input full-scale (as opposed to +/- 10V on the B-Box

RCP).

Simulate sensor(s) sensitivity(ies): when true, the ADC block expects its input to be the value of the sensor’s output (typ.

±10V). When false, it expects the physical measure value.

Sampling

Synchronous averaging configures the block to output the average ADC value over 1 or 2 periods of CLOCK_0.

See Synchronous averaging (PN124) for more details.

Multiple samples per period (ADC history) configures the block to output a vector of the N last values, as documented

in Oversampling (PN154). This option is mutually exclusive with the synchronous averaging.

https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-3.png
https://imperix.com/doc/wp-content/uploads/2021/04/ADC-mask-simulink-3.png
https://imperix.com/doc/help/simulation-essentials-plecs
https://imperix.com/doc/help/simulation-essentials-plecs
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-165.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-165.png
https://imperix.com/doc/help/synchronous-averaging
https://imperix.com/doc/help/oversampling

https://imperix.com/doc/wp-content/uploads/2024/08/image-10.png
https://imperix.com/doc/wp-content/uploads/2024/08/image-10.png
https://imperix.com/doc/wp-content/uploads/2024/08/image-13.png
https://imperix.com/doc/wp-content/uploads/2024/08/image-13.png
https://imperix.com/doc/wp-content/uploads/2024/08/image-11.png
https://imperix.com/doc/wp-content/uploads/2024/08/image-11.png

C++ functions

The sampling is by design linked to the same clock generator as the interrupt, thus the sampling frequency and phase are configured

using the ConfigureMainInterrupt function as explained in the related note: Interrupt configuration.

Standard functions

Adc_ConfigureInput — Configure an ADC channel

void Adc_ConfigureInput(unsigned int input, float gain, float offset, unsigned int device=0);Code language: C++ (cpp)

Configures the desired ADC channel with the desired gain and offset that is applied on the 16-bit digitally-converted value to obtain

a floating-point quantity such as .

It has to be called in UserInit() for each channel that the user wants to use.

Parameters

input: the analog input channel number (e.g. 0 to 15 on B-Box RCP)

gain: the gain applied on the 16-bit digitally-converted value

offset: the offset applied to the returned value

device: the id of the addressed device (optional, used in multi-device configuration only)

The gain is not equal to the sensor sensitivity. The example of use section below shows how to compute the gain and offset
parameters.

Adc_GetValue — Read the ADC value

float Adc_GetValue(unsigned int input, unsigned int device=0);Code language: C++ (cpp)

Retrieves the value of an ADC channel, with the gain and offset already applied.

It has to be called in the interrupt.

Parameters

input: the analog input channel number (0 to 15)

device: the id of the addressed device (optional, used in multi-device configuration only)

Adc_EnableSynchronousAveraging — Enables synchronous averaging on an ADC channel

void Adc_EnableSynchronousAveraging(unsigned int input, unsigned int device);Code language: C++ (cpp)

When enabled, Adc_GetValue returns the average ADC value over a period of CLOCK_0.

It has to be called in the interrupt.

Parameters

input: the analog input channel number (0 to 15)

device: the id of the addressed device (optional, used in multi-device configuration only)

Advanced functions for oversampling

These functions are used to perform oversampling, read Oversampling (PN154) to learn more.

Adc_AddSamplingEvent — Configure a new sampling instant

void Adc_SetUserOversampling(int oversampling);Code language: C++ (cpp)

Sets the number of ADC samples to acquire at each CLOCK_0 period.

The samples are evenly distributed and can be retrieved using and Adc_GetHistory.

It has to be called in UserInit().

Parameters

oversampling: number of samples to acquire at each CLOCK_0 period

valuefloat = gain × value16bit + offset

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/help/oversampling

Adc_ConfigureHistory — Configure the ADC history

void Adc_ConfigureHistory(unsigned int input, unsigned int depth, unsigned int device=0);Code language: C++ (cpp)

Enables the possibility to have access to the N last ADC samples using Adc_GetHistory().

It has to be called in UserInit().

Parameters

input: the analog input channel number

depth: the number of samples available

device: the id of the addressed device (optional, used in multi-device configuration only)

Adc_GetHistory — Read the historical samples

float Adc_GetHistory(unsigned int input, unsigned int n, unsigned int device=0);Code language: C++ (cpp)

Gets the Nth historical sample of a given ADC channel.

Using Adc_GetHistory(n=0) is equivalent to using Adc_GetValue().

It has to be called during the control interrupt.

Parameters

input: the analog input channel number (0 to 15)

n: the historical index of the sample to read (0 is the most recent one)

device: the id of the addressed device (optional, used in multi-device configuration only)

Example of use

For the sake of this example, we recompute the necessary ADC gain. However, the gains for imperix standard sensors and power

modules are already defined in sensors.h

This example considers the current sensor of a PEB8024 module. Its sensitivity is . As recommended in the

datasheet, the chosen front-end gain is selected as . Considering that the ADC offers 16 bits over the ±10V input range, this

results in a total sensitivity .

In this example, gain must therefore be equal to . The offset value can be adjusted empirically to

cancel the measured value when no current is flowing through the sensor (static offset).

#define ADCONV (32768.0/10.0) // +/- 10V input range, 16-bit ADC
#define SENSITIVITY (0.05*2*ADCONV) // total sensitivity
#define I_GAIN (1.0/SENSITIVITY)

float I_meas = 0;

tUserSafe UserInit(void)
{
 Adc_ConfigureInput(0, I_GAIN, 0.0);
 return SAFE;
}

tUserSafe UserInterrupt(void)
{
 I_meas = Adc_GetValue(0);
 return SAFE;
}Code language: C++ (cpp)

S = 50.0 [mV/A]

G = 2

α = S ⋅ G ⋅ 32768/10 = 327.68 [bit/A]

gain = 1/α = 3.052 [mA/bit]

https://imperix.com/wp-content/uploads/document/PEB-SIC-8024.pdf
https://imperix.com/wp-content/uploads/document/PEB-SIC-8024.pdf

