CB-PWM - Carrier-based PWM

SD010 | Posted on April 2, 2021 | Updated on July 24, 2025

Benoît STEINMANN Software Team Leader imperix • in

Table of Contents

- Simulink block
 - o Signal specification
 - o <u>Parameters</u>
- PLECS block
 - o Signal specification
 - o Parameters
- C++ functions
 - o Functions specific to the carrier-based PWM
 - o Functions common to all PWM drivers

The Carrier-based PWM block generates PWM signals based on one of the 4 following carrier shapes:

When using the **single-rate** update configuration, the computed duty-cycle is synchronously applied at the end of the PWM period. With the **double-rate** update and a TRIANGLE carrier, the duty-cycle is updated twice per period: in the middle and at the end (in other words when the carrier reaches its maximum and when it reaches its minimum).

Triangle carrier

Inverted triangle carrier

Inverted sawtooth carrier

The **frequency** of the carrier is configured by connecting the CB-PWM block to a <u>Clock generator</u>. The frequency can even be tuned during the control execution as explained in <u>Variable frequency operation with the B-Box/B-Board</u>.

The **phase-shift** of the carrier can also be changed during execution, independently for each PWM block.

Like the other PWM blocks, it supports **dead time generation** and can be **activated or deactivated**. More information is available on the <u>PWM page</u>.

Simulink block

Signal specification

- The input signal **D** is the duty-cycle (0.0 to 1.0)
- The input signal **P** is the carrier phase-shift relative to the CLK (0.0 to 1.0)
- The input signal > is the clock input and must be connected to the CONFIG block or to an independent CLK
- The input A allows the activation (>0) or deactivation (<=0) of the PWM output(s).
- The output(s) is/are the generated PWM signal(s), according to the selected Output mode. The output(s) is/are only used in simulation.

Parameters

- Device ID selects which B-Box/B-Board to address when used in a multi-device configuration.
- Output mode selects between a single PWM signal or complementary signals with a dead-time.
- Addressed channel(s) or Addressed lane(s) (vectorizable) selects the PWM outputs to address.
- Modulation parameters
 - Carrier type selects the type of carrier (TRIANGLE, SAWTOOTH, INVTRIANGLE, or INVSAWTOOTH)

- Duty-cycle(s) (vectorizable) configures the duty cycle. It can be tuned in real-time using the D signal input or be configured only once from the block mask parameter.
- **Phase(s)** (vectorizable) configures the carrier phase-shift relative to the CLK. It can be tuned in real-time using the P signal input or be configured only once from the block mask parameter.
- o Show "activate" input makes the A signal input visible. If not checked, the CB-PWM block is active by default.
- o PWM parameters update rate selects when the duty-cycle and phase parameters are applied.
 - Single-rate: they are applied at the end of the carrier period.
 - Double-rate: they are applied twice per carrier period: when the carrier reaches its lowest point and when it reaches
 its highest point. (for TRIANGLE and INVTRIANGLE carriers only)
- o Simulation output type
 - *PWM signals*: outputs are logic gate signals 0 or 1.
 - Duty-cycle: outputs are duty-cycles between 0 and 1. This option is only used with averaged power switch models.
- · Complementary signal parameters
 - Dead-time duration configures the dead-time duration if the Output mode is set to Dual (PWM_H + PWM_L).

The parameters output mode, addressed PWM, dead-time and show "activate" input are common to all PWM blocks and are further documented on the PWM.page.

PLECS block

Signal specification

- The input signal **D** is the duty-cycle (0.0 to 1.0)
- The input signal P is the carrier phase-shift relative to the CLK (0.0 to 1.0)
- The input signal > is the clock input and must be connected to the CONFIG block or to an independent CLK
- The input A allows the activation (>0) or deactivation (<=0) of the PWM output(s).
- The target outport(s) (only visible at the atomic subsystem level) is/are the generated PWM signal(s), according to the selected Output mode. The output(s) is/are only used in the simulation.

Parameters

- Addressing
 - o Device ID selects which B-Box/B-Board to address when used in a multi-device configuration.
 - o **Output mode** selects between a single PWM signal or complementary signals with a deadtime.
 - o Output lane(s) or Output channel(s) (vectorizable) selects the PWM outputs to address.
- · Modulation parameters
 - o Carrier type: selects the type of carrier (Triangle, Sawtooth, Inverted triangle, or Inverted sawtooth)
 - **Duty-cycle(s)**(vectorizable) configures the duty-cycle. It can be tuned in real-time using the D signal input or be set as a constant and configured from the block mask parameter.
 - Carrier phase-shift(s)(vectorizable) configures the carrier phase-shift relative to the CLK. It can be tuned in real-time using the P signal input or be set as a constant and configured from the block mask parameter.
 - **PWM activation** makes the A signal input visible if the option "Use block input" is selected. If not, the CB-PWM block is activated by default.
 - o PWM parameters update rate selects when the duty-cycle and phase parameters are applied.
 - Single-rate: they are applied at the end of the carrier period.
 - Double-rate: they are applied twice per carrier period: when the carrier reaches its lowest point and when it reaches
 its highest point. (for triangle and invtriangle carriers only)
 - Simulation output type
 - *PWM signals*: outputs are logic gate signals 0 or 1.

- Duty-cycle: outputs are duty-cycles between 0 and 1. This option is only used with averaged power switch models.
- Complementary signal parameters
 - Dead-time duration configures the dead-time duration if the Output mode is set at Dual (PWM_H + PWM_L).

The parameters output mode, addressed PWM, dead time and PWM activation are common to all PWM blocks and are further documented on the <u>PWM page</u>.

C++ functions

Functions specific to the carrier-based PWM

```
CbPwm_ConfigureClock — Select a CLOCK
```

void CbPwm_ConfigureClock(tPwmOutput output, tClock clock, unsigned int device=0);
Code language: C++ (cpp)

Connects a clock generator to the modulator.

It has to be called in UserInit().

See: CLK - Clock generator

Parameters

- output: the PWM channel or lane to address
- clock: the clock to use (CLOCK_0, CLOCK_1, CLOCK_2 or CLOCK_3)
- device: the B-Box/B-Board to address when used in a multi-device configuration

```
CbPwm_ConfigureCarrier — Select the carrier shape
```

```
void CbPwm_ConfigureCarrier(tPwmOutput output, tPwmCarrier carrier, unsigned int device=0);
Code language: C++ (cpp)
```

Selects the carrier shape of the modulator.

It has to be called in UserInit().

Parameters

- output: the PWM channel or lane to address
- carrier: the carrier to use (TRIANGLE, SAWTOOTH, INVTRIANGLE, or INVSAWTOOTH)
- device: the B-Box/B-Board to address when used in a multi-device configuration

CbPwm_ConfigureUpdateRate — Select an update rate

```
void CbPwm_ConfigureUpdateRate(tPwmOutput output, tPwmRate rate, unsigned int device=0);
Code language: C++ (cpp)
```

Select when the duty-cycle and phase parameters are applied.

- Single-rate: they are applied at the end of the carrier period.
- Double-rate: they are applied twice per carrier period: when the carrier reaches its lowest point and when it reaches its highest point. (for TRIANGLE and INVTRIANGLE carriers only)

It has to be called in UserInit().

Parameters

- output: the PWM channel or lane to address
- rate: the update rate to use (SINGLE_RATE or DOUBLE_RATE)
- device: the B-Box/B-Board to address when used in a multi-device configuration

CbPwm_SetPhase — Set the carrier phase shift

```
void CbPwm_SetPhase(tPwmOutput output, float phase, unsigned int device=0); Code language: C++ (cpp)
```

Configures the carrier phase-shift relative to the CLK.

It can be called in UserInit() or in the control interrupt routine.

Parameters

- output: the PWM channel or lane to address
- phase: the carrier phase-shift relative to the CLK (0.0 to 1.0)
- device: the B-Box/B-Board to address when used in a multi-device configuration

```
CbPwm_SetDutyCycle — Set the duty cycle
```

```
void CbPwm_SetDutyCycle(tPwmOutput output, float dutyCycle, unsigned int device=0);Code language: C++ (cpp)
```

Configures the duty-cycle.

It can be called in UserInit() or in the control interrupt routine.

Parameters

- · output: the PWM channel or lane to address
- dutyCycle: the duty-cycle (0.0 to 1.0)
- device: the B-Box/B-Board to address when used in a multi-device configuration

Functions common to all PWM drivers

These functions are common to all PWM blocks. Further documentation is available on the PWM page.

```
CbPwm_ConfigureOutputMode — Select the PWM output mode
```

void CbPwm_ConfigureOutputMode(tPwmOutput output, tPwmOutMode outMode, unsigned int device=0);Code language: C++ (cpp)
Selects the PWM output mode.

If the output mode selected is COMPLEMENTARY, a dead-time must be configured using the CbPwm_ConfigureDeadTime() function.

It has to be called in UserInit().

Parameters

- output: the PWM channel or lane to address
- outMode: the output mode to use (COMPLEMENTARY, INDEPENDENT or PWMH_ACTIVE)
- device: the B-Box/B-Board to address when used in a multi-device configuration

```
CbPwm_ConfigureDeadTime — Configure the dead time
```

void CbPwm_ConfigureDeadTime(tPwmOutput output, float deadTime, unsigned int device=0);Code language: C++ (cpp)
Configures the dead-time duration if the output mode is set as COMPLEMENTARY.

It has to be called in UserInit().

Parameters

- output: the PWM channel or lane to address
- outMode: the output mode to use (COMPLEMENTARY, INDEPENDENT or PWMH_ACTIVE)
- device: the B-Box/B-Board to address when used in a multi-device configuration

```
CbPwm_Activate — Activate the PWM outputs
```

```
void CbPwm_Activate(tPwmOutput output, unsigned int device=0);
Code language: C++ (cpp)
```

Activates the addressed PWM output(s). If the addressed PWM output has been set as *COMPLEMENTARY* or *PWMH_ACTIVE* this function acts on both outputs.

It can be called in ${\tt UserInit}()$ or in the control interrupt routine.

Parameters

- output: the PWM channel or lane to address
- device: the B-Box/B-Board to address when used in a multi-device configuration

```
CbPwm_Deactivate — Deactivate the PWM outputs
```

void CbPwm_Deactivate(tPwmOutput output, unsigned int device=0);Code language: C++ (cpp)

Deactivates the addressed PWM output(s). If the addressed PWM output has been set as *COMPLEMENTARY* or *PWMH_ACTIVE* this function acts on both outputs.

It can be called in UserInit() or in the control interrupt routine.

Parameters

- output: the PWM channel or lane to address
- device: the B-Box/B-Board to address when used in a multi-device configuration