Alpha-Beta-Zero to dq0

SD033 | Posted on June 24, 2021 | Updated on May 27, 2025

Julien ORSINGER
Power Applications Specialist imperix • in

Table of Contents

- Simulink block
 - Signal specification
 - o <u>Parameters</u>
- PLECS block
- C++ functions

The "Alpha-Beta-Zero to dq0" block converts a space vector from a stationary $(a\beta 0)$ to a rotating reference frame (dq0). The angle of the rotating reference frame is given by the second input $\theta = \omega t$.

The transformation is performed using the following rotation:

$$\begin{bmatrix} V_d \\ V_q \\ V_0 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} V_\alpha \\ V_\beta \\ V_0 \end{bmatrix}$$

Simulink block

Signal specification

- The first input is a vector of dimension 3, containing the $\alpha\beta 0$ components of the space vector in the stationary reference frame.
- The second input is the angle θ of the rotating reference frame, in radians.
- The output is a vector of dimension 3, containing the *dq0* components of the space vector in the rotating reference frame.

Parameters

None.

PLECS block

None. The PLECS block *Transformation SRF->RRF* can be used instead.

C++ functions

The user template located in the installation folder of CPP SDK contains an API folder with implementations of the coordinate transformation functions. The $\alpha\beta 0$ to dq0 function is the following:

```
void ABG2DQ0(SpaceVector *rotating, const SpaceVector *fixed, const float theta);
Code language: C++ (cpp)
```

Parameters

- rotating: pointer on the *dq0* space vector that will be updated. The SpaceVector structure is defined below.
- fixed: pointer on the $\alpha\beta 0$ space vector that will be transformed. The SpaceVector structure is defined below.
- theta: the angle of the rotating reference frame, in radians.