BiSS-C - Digital encoder input

SD108 | Posted on January 30,2026 | Updated on January 30, 2026

Francois LEDENT
Development Engineer
imperix - in

Table of Contents

e BiSS-C protocol in a nutshell
e Strengths and limitations
Simulink block

o Signal specification

o Parameters
PLECS block

o Signal specification

o Parameters

e C++ functions

The BiSS-C block instantiates a Bidirectional Synchronous Serial — Communication (BiSS-C) master to communicate with BiSS-C-
compatible digital encoders and similar digital sensors, typically in motor drive applications.

This block is only compatible with the B-Box4, which provides two RS-485-based serial ports (SERIAL A and SERIAL B). Both ports can
interface with sensors using three widely adopted communication protocols: SSI, BiSS-C (this page) and EnDat2.2.

Along with the single-turn position, this block supports the reception of a multi-turn counter and follows the common assumption that
the single-turn and multi-turn values are placed side by side in the frame received from the sensor, as illustrated below.

Slave Time-out
proc. time delay
CLOCK (CDM)
DATA (ACK) (start) (CDS) /< Multi-turn counter | Single-turn position >\ |_

BiSS-C frame with multi-turn and single-turn data side by side, as assumed by the BiSS-C block.
(ACK) = acknowledgment bit ; (start) = start bit ; (CDM/S) = control data master/slave

As the BiSS-C protocol does not define separate versions, this driver is compatible with any sensor that uses binary-encoded BiSS-C.
Gray encoding is currently not supported.

BiSS-C protocol in a nutshell

Created in 2022 by iC Haus GbmH, the BiSS-C protocol is a master-slave serial standard widely used in industrial applications. Often
considered as an extension to SSI, the BiSS-C protocol supports a higher clock frequency (up to 10 MHz) and propagation delay
compensation.

The interface is composed of two unidirectional signals, CLOCK (driven by the master) and DATA (driven by the slave), regardless of
the resolution (i.e., number of bits per revolution) of the sensor. Differential signaling improves the noise immunity and allows for
longer cable runs, making it suitable for industrial environments.

As illustrated above, the frame transmission consists of the following steps:

1. The controller (master) initiates the transmission by starting the CLOCK.

2. The sensor (slave) acknowledges by driving DATA signal to LOW on the second rising edge of the CLOCK (see ‘ack’ on the
figure). This mechanism allows the master to estimate the total propagation delay by comparing the CLOCK and DATA edges.

3. When needed, the slave can maintain the DATA signal to LOW for several CLOCK cycles, to sample the position or for internal
computations for instance (see ‘slave delay’).

https://www.linkedin.com/in/francois-ledent/
https://imperix.com/doc/wp-content/uploads/2025/11/ssi_frame-Page-3-4.png
https://imperix.com/doc/wp-content/uploads/2025/11/ssi_frame-Page-3-4.png

4. The slave triggers the payload transmission by sending the start bit (see ‘start’).

5. The first bit of the payload is the slave-to-master control data bit (see ‘CDS’).

6. The slave transmits the payload, bit by bit on DATA, synchronously with the CLOCK.

7. At the end of the transmission, the slave maintains the DATA signal to LOW during the time-out. The master can optionally send
a master-to-slave control data bit at this moment.

8. The CLOCK and DATA return to IDLE.

The BiSS-C protocol provides room for a control mechanism to access the slave’s configuration memory. However, since the control
bits are distributed across multiple frames—with only two control bits per frame (see “CDM” and “CDS")—this mechanism significantly
increases complexity and is currently not supported in the imperix implementation.

While the BiSS-C standard defines how the clock and data signals are exchanged between the master and the slave, it does not
specifies the frame structure. The content of the frame may therefore vary from one sensor to another.

The angle within the current rotation is usually called single-turn position. Most digital encoders also offer the capability to track the
number of rotations, usually referred to as multi-turn counter.

Strengths and limitations

The BiSS-C protocol is valued for its simple and robust design. With only two differential and unidirectional digital lines, it can be easily
integrated and performs reliably even in electrically noisy environments.

The synchronous data transfer provides accurate, low-latency position feedback, making it well suited for real-time control. Moreover,
it supports higher clock frequencies (up to 10 MHz) and allows the compensation of the propagation delay.

Simulink block

Signal specification

e The output 0 is the single-turn position, in radians, in [0, 2x].

e The output cnt is the multi-turn counter, as received from the sensor. This port is hidden by default but it can be shown using
the Output multi-turn counter checkbox.

e The output v is the data valid signal, set to 1 each time a new data are available.

e Theinput simis a 2-dimensional vector used in simulation and represents the angle value (in radians) and multi-turn counter (-)
computed by the simulation plant model.

e The > input signal needs to be connected to the sampling clock generated by the CONFIG block.

cnt

Parameters

e Device ID selects which device to address when used in a multi-device configuration.

e Serial port selects the serial port.

e Clock frequency specifies the transmission clock frequency for the BiSS-C communication, in MHz. The clock frequency
cannot exceed 10 MHz, as defined by the BiSS-C standard.

e Direction specifies the direction as clockwise or counterclockwise. When counterclockwise is selected, the output angle 0 is
2n-0', where 0' is the angle received from the sensor.

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/wp-content/uploads/2025/11/image-42.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-42.png

e Single-turn resolution specifies the resolution (i.e., number of bits) for the single-turn position. The single-turn resolution
cannot exceed 32 bits.

e Multi-turn resolution specifies the resolution (i.e., number of bits) for the multi-turn counter. The multi-turn resolution
cannot exceed 32 bits.

e Output multi-turn counter shows or hides the multi-turn counter output cnt.

Block Parameters: BiSS-C b4
BiSS-C (mask) (link)

Configures a Bidirectional Serial Synchronous (BiS5-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an angle
within [0, 2n], in radians.

- Multi-turn counter "cnt" as received from the sensor (optional).
- Data valid "v", equal to '1' when a new data was received from
sensor and outputs were updated.

Addressing

Device ID (default=0) |D

Serial port |Port A hd

Driver configuration

Global Payload

Clock frequency (MHz) | 2

Direction | Clockwise -

Block configuration

O Output multi-turn counter

Cancel Help Apply

Block Parameters: BiS5-C >
BiSS-C (mask]) (link)

Configures a Bidirectional Serial Synchronous (BiSS-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an angle
within [0, 2n], in radians.

- Multi-turn counter "cnt" as received from the sensor (optional).
- Data valid "v", equal to '1' when a new data was received from
sensor and outputs were updated.

Addressing

Device ID (default=0) |D

Serial port |Port A hd

Driver configuration

Global Payload

Single-turn resolution (bits) |12 |

Multi-turn resolution (bits) |24 |

Block configuration

[output multi-turn counter

Cancel Help Apply

PLECS block

Signal specification

e The output 0 is the single-turn position, in radians, in [0, 2x].

https://imperix.com/doc/wp-content/uploads/2025/11/image-43.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-43.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-44.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-44.png

e The output cnt is the multi-turn counter, as received from the sensor. This port is hidden by default but it can be shown using
the Output multi-turn counter checkbox.

e The output v is the data valid signal, set to 1 each time a new data are available.

e Theinput simis a 2-dimensional vector used in simulation and represents the angle value (in radians) and multi-turn counter (-)
computed by the simulation plant model.

e The > input signal needs to be connected to the sampling clock generated by the CONFIG block.

Parameters

e Device ID selects which device to address when used in a multi-device configuration.

e Serial port selects the serial port.

e Clock frequency specifies the transmission clock frequency for the BiSS-C communication, in MHz. The clock frequency
cannot exceed 10 MHz, as defined by the BiSS-C standard.

e Direction specifies the direction as clockwise or counterclockwise. When counterclockwise is selected, the output angle 6 is
2n-6’, where 6’ is the angle received from the sensor.

e Single-turn resolution specifies the resolution (i.e., number of bits) for the single-turn position. The single-turn resolution
cannot exceed 32 bits.

e Multi-turn resolution specifies the resolution (i.e., number of bits) for the multi-turn counter. The multi-turn resolution
cannot exceed 32 bits.

e Output multi-turn counter shows or hides the multi-turn counter output cnt.

) Block Parameters: imperix_template/lmperix contr...
BiSS-C (mask)
Configures a Bidirectional Serial Synchronous (BiS5-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an
angle within [0, 2n], in radians.

- Multi-turn counter “ont” as received from the sensor
(optional).

-Data valid "v", equal to '1' when a new data was received
from sensor and outputs were updated.

Addressing Driver Payload Qutputs

Device ID [default=0]:

o [
Serial port:
Port A ~

Cancel Apply Help

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/wp-content/uploads/2025/11/image-46.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-46.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-48.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-48.png

2] Block Parameters: imperix_template/lmperix contr...
BiSS-C (mask)
Configures a Bidirectional Serial Synchronous (BiS5-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an
angle within [0, 2n], in radians.

- Multi-turn counter “ont” as received from the sensor
(optional).

- Data valid "v", equal to '1' when a new data was received
from sensor and outputs were updated.

Addressing Driver Payload Qutputs

Single-turn resolution (bits):

[12 IO
Multi-turn resolution (bits):
[24 IO

Cancel Apply Help

2] Block Parameters: imperix_template/lmperix contr... 3
BiS5-C {mask)
Configures a Bidirectional Serial Synchronous (BiS5-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an
angle within [0, 2n], in radians.

- Multi-turn counter "cnt” as received from the sensor
(optional).

-Data valid "v", equal to '1' when a new data was received
from sensor and outputs were updated.

Addressing Driver Payload Qutputs

Clock frequency (MHz):

2 IO
Direction:

Clockwise ~|

Cancel Apply Help

2] Block Parameters: imperix_template/lmperix contr...
BiSS-C (mask)

Configures a Bidirectional Serial Synchronous (BiS5-C) master.

Outputs:

- Single-turn position "8" as received from the sensor, as an
angle within [0, 2n], in radians.

- Multi-turn counter “ont” as received from the sensor
(optional).

- Data valid "v", equal to '1' when a new data was received
from sensor and outputs were updated.

Addressing Driver Payload Qutputs

Output multi-turn counter:
false ~|

Cancel Apply Help

C++ functions

[BissC_Init — Initialize the BiSS-C master |

void BissC_Init(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function initializes the serial port port of the device device for the BiSS-C communication protocol.
It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

e port: Serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_ConfigureClkFrequency — Configure the transmission clock frequency]

void BissC_ConfigureClkFrequency(float clk_frequency, unsigned int port, unsigned int device);Code language: C++ (cpp)

https://imperix.com/doc/wp-content/uploads/2025/11/image-50.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-50.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-49.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-49.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-51.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-51.png

This function configures the frequency of the transmission clock for the BiSS-C communication on the serial port port of the device
device, in MHz. The clock frequency cannot exceed 10 MHz, as defined by the BiSS-C standard.

It has to be called in UserInit().
TPI Rev. F: Only serial port A is available.
Parameters

e clk_frequency: transmission clock frequency, in MHz
e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_ConfigureDirection — Configure the rotation direction]

void BissC_ConfigureDirection(tRs485Direction direction, unsigned int port, unsigned int device);Code language: C++ (

This function configures the direction for the BiSS-C communication on the serial port port of the device device, as clockwise or
counterclockwise. When counterclockwise is selected, the output angle 0 is 27-0’, where 6’ is the angle received from the sensor.

It has to be called in UserInit().
TPI Rev. F: Only serial port A is available.
Parameters

e direction: direction (RS485_CW or RS485_CCW)
e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_ConfigurePayload — Configure the frame payload }

void BissC_ConfigurePayload(unsigned short n_bit_before, unsigned short n_bit_multiturn, unsigned short n_bit_sing

This function configures the expected structure of the frame received from the sensor. The function is based on the common
assumption that the single-turn and multi-turn values are placed side by side in the frame received from the sensor.

The single-turn and multi-turn resolutions cannot exceed 32 bits each, and the total payload length cannot exceed 64 bits (i.e.,
n_bit_before + n_bit_multiturn + n_bit_singleturn + n_bit_after < 64).

In general, n_bit_before might be 0 and n_bit_

As an example, the function call for a E36CM-BIS-1311-1224 (Hohner) is BissC_ConfigurePayload(0, 24, 12, 8, <port>, <device>).
It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

e n_bit_before: number of bits before the multi-turn value in the frame received from the sensor

e n_bit_multiturn: multi-turn resolution, i.e. number of bits composing the multi-turn value in the frame received from the
sensor

e n_bit_singleturn: single-turn resolution, i.e. number of bits composing the single-turn value in the frame received from the
sensor

e n_bit_after: number of bits after the single-turn value in the frame received from the sensor

e port: serial port, 0 (port A) or 1 (port B)

e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_ReadFrame — Read the current frame]

void BissC_ReadFrame(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function triggers the CPU to read and interpret the last frame received from the sensor.
It must be called in the control interrupt routine.

TPI Rev. F: Only serial port A is available.

Parameters

e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_GetPosition — Get the sensor’s position]

float BissC_GetPosition(unsigned int port, unsigned int device);Code language: C++ (cpp)
This function returns the single-turn position received from the sensor as an angle, in radians, in [0, 2x].
It must be called in the control interrupt routine, after BissC_ReadFrame.

TPI Rev. F: Only serial port A is available.

Parameters

e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_GetMultiturnCounter — Get the sensor’s multi-turn counter }

unsigned int BissC_GetMultiturnCounter(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function returns the multi-turn counter received from the sensor.

It must be called in the control interrupt routine, after BissC_ReadFrame.
TPI Rev. F: Only serial port A is available.

Parameters

e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_GetDatavalid — Get the data valid flag |

unsigned int BissC_GetDataValid(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function returns the data valid flag indicating if a new data was received from the sensor. The flag being ‘1’ means that the
outputs of BissC_GetPosition and BissC_GetMultiturnCounter were updated since last interruption. If the flag is ‘0’, the outputs were
not updated and have the same value.

It must be called in the control interrupt routine, after BissC_ReadFrame.
TPI Rev. F: Only serial port A is available.
Parameters

e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

[BissC_ErrorCheck — Raise warning in case of communication error]

void BissC_ErrorCheck(unsigned int port, unsigned int device);Code language: C++ (cpp)
This function checks the communication status and raises warnings in case of communication error(s).
It must be called in the control interrupt routine.

TPI Rev. F: Only serial port A is available.

Parameters

e port: serial port, 0 (port A) or 1 (port B)
e device: imperix device to address in a multi-device configuration (default: 0)

