
BiSS-C - Digital encoder input

SD108 | Posted on January 30, 2026 | Updated on January 30, 2026

François LEDENT

Development Engineer

•

Table of Contents

BiSS-C protocol in a nutshell

Strengths and limitations

Simulink block

Signal specification

Parameters

PLECS block

Signal specification

Parameters

C++ functions

The BiSS-C block instantiates a Bidirectional Synchronous Serial – Communication (BiSS-C) master to communicate with BiSS-C-

compatible digital encoders and similar digital sensors, typically in motor drive applications.

This block is only compatible with the B-Box4, which provides two RS-485-based serial ports (SERIAL A and SERIAL B). Both ports can

interface with sensors using three widely adopted communication protocols: SSI, BiSS-C (this page) and EnDat2.2.

Along with the single-turn position, this block supports the reception of a multi-turn counter and follows the common assumption that

the single-turn and multi-turn values are placed side by side in the frame received from the sensor, as illustrated below.

BiSS-C frame with multi-turn and single-turn data side by side, as assumed by the BiSS-C block.

(ACK) = acknowledgment bit ; (start) = start bit ; (CDM/S) = control data master/slave

As the BiSS-C protocol does not define separate versions, this driver is compatible with any sensor that uses binary-encoded BiSS-C.

Gray encoding is currently not supported.

BiSS-C protocol in a nutshell

Created in 2022 by iC Haus GbmH, the BiSS-C protocol is a master-slave serial standard widely used in industrial applications. Often

considered as an extension to SSI, the BiSS-C protocol supports a higher clock frequency (up to 10 MHz) and propagation delay

compensation.

The interface is composed of two unidirectional signals, CLOCK (driven by the master) and DATA (driven by the slave), regardless of

the resolution (i.e., number of bits per revolution) of the sensor. Differential signaling improves the noise immunity and allows for

longer cable runs, making it suitable for industrial environments.

As illustrated above, the frame transmission consists of the following steps:

1. The controller (master) initiates the transmission by starting the CLOCK.

2. The sensor (slave) acknowledges by driving DATA signal to LOW on the second rising edge of the CLOCK (see ‘ack’ on the

figure). This mechanism allows the master to estimate the total propagation delay by comparing the CLOCK and DATA edges.

3. When needed, the slave can maintain the DATA signal to LOW for several CLOCK cycles, to sample the position or for internal

computations for instance (see ‘slave delay’).

https://www.linkedin.com/in/francois-ledent/
https://imperix.com/doc/wp-content/uploads/2025/11/ssi_frame-Page-3-4.png
https://imperix.com/doc/wp-content/uploads/2025/11/ssi_frame-Page-3-4.png

4. The slave triggers the payload transmission by sending the start bit (see ‘start’).

5. The first bit of the payload is the slave-to-master control data bit (see ‘CDS’).

6. The slave transmits the payload, bit by bit on DATA, synchronously with the CLOCK.

7. At the end of the transmission, the slave maintains the DATA signal to LOW during the time-out. The master can optionally send

a master-to-slave control data bit at this moment.

8. The CLOCK and DATA return to IDLE.

The BiSS-C protocol provides room for a control mechanism to access the slave’s configuration memory. However, since the control

bits are distributed across multiple frames—with only two control bits per frame (see “CDM” and “CDS”)—this mechanism significantly

increases complexity and is currently not supported in the imperix implementation.

While the BiSS-C standard defines how the clock and data signals are exchanged between the master and the slave, it does not

specifies the frame structure. The content of the frame may therefore vary from one sensor to another.

The angle within the current rotation is usually called single-turn position. Most digital encoders also offer the capability to track the

number of rotations, usually referred to as multi-turn counter.

Strengths and limitations

The BiSS-C protocol is valued for its simple and robust design. With only two differential and unidirectional digital lines, it can be easily

integrated and performs reliably even in electrically noisy environments.

The synchronous data transfer provides accurate, low-latency position feedback, making it well suited for real-time control. Moreover,

it supports higher clock frequencies (up to 10 MHz) and allows the compensation of the propagation delay.

Simulink block

Signal specification

The output θ is the single-turn position, in radians, in [0, 2π].

The output cnt is the multi-turn counter, as received from the sensor. This port is hidden by default but it can be shown using

the Output multi-turn counter checkbox.

The output v is the data valid signal, set to 1 each time a new data are available.

The input sim is a 2-dimensional vector used in simulation and represents the angle value (in radians) and multi-turn counter (-)

computed by the simulation plant model.

The > input signal needs to be connected to the sampling clock generated by the CONFIG block.

Parameters

Device ID selects which device to address when used in a multi-device configuration.

Serial port selects the serial port.

Clock frequency specifies the transmission clock frequency for the BiSS-C communication, in MHz. The clock frequency

cannot exceed 10 MHz, as defined by the BiSS-C standard.

Direction specifies the direction as clockwise or counterclockwise. When counterclockwise is selected, the output angle θ is

2π-θ’, where θ’ is the angle received from the sensor.

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/wp-content/uploads/2025/11/image-42.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-42.png

Single-turn resolution specifies the resolution (i.e., number of bits) for the single-turn position. The single-turn resolution

cannot exceed 32 bits.

Multi-turn resolution specifies the resolution (i.e., number of bits) for the multi-turn counter. The multi-turn resolution

cannot exceed 32 bits.

Output multi-turn counter shows or hides the multi-turn counter output cnt.

PLECS block

Signal specification

The output θ is the single-turn position, in radians, in [0, 2π].

https://imperix.com/doc/wp-content/uploads/2025/11/image-43.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-43.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-44.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-44.png

The output cnt is the multi-turn counter, as received from the sensor. This port is hidden by default but it can be shown using

the Output multi-turn counter checkbox.

The output v is the data valid signal, set to 1 each time a new data are available.

The input sim is a 2-dimensional vector used in simulation and represents the angle value (in radians) and multi-turn counter (-)

computed by the simulation plant model.

The > input signal needs to be connected to the sampling clock generated by the CONFIG block.

Parameters

Device ID selects which device to address when used in a multi-device configuration.

Serial port selects the serial port.

Clock frequency specifies the transmission clock frequency for the BiSS-C communication, in MHz. The clock frequency

cannot exceed 10 MHz, as defined by the BiSS-C standard.

Direction specifies the direction as clockwise or counterclockwise. When counterclockwise is selected, the output angle θ is

2π-θ’, where θ’ is the angle received from the sensor.

Single-turn resolution specifies the resolution (i.e., number of bits) for the single-turn position. The single-turn resolution

cannot exceed 32 bits.

Multi-turn resolution specifies the resolution (i.e., number of bits) for the multi-turn counter. The multi-turn resolution

cannot exceed 32 bits.

Output multi-turn counter shows or hides the multi-turn counter output cnt.

https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/wp-content/uploads/2025/11/image-46.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-46.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-48.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-48.png

C++ functions

BissC_Init — Initialize the BiSS-C master

void BissC_Init(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function initializes the serial port port of the device device for the BiSS-C communication protocol.

It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

port: Serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_ConfigureClkFrequency — Configure the transmission clock frequency

void BissC_ConfigureClkFrequency(float clk_frequency, unsigned int port, unsigned int device);Code language: C++ (cpp)

https://imperix.com/doc/wp-content/uploads/2025/11/image-50.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-50.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-49.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-49.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-51.png
https://imperix.com/doc/wp-content/uploads/2025/11/image-51.png

This function configures the frequency of the transmission clock for the BiSS-C communication on the serial port port of the device

device, in MHz. The clock frequency cannot exceed 10 MHz, as defined by the BiSS-C standard.

It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

clk_frequency: transmission clock frequency, in MHz

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_ConfigureDirection — Configure the rotation direction

void BissC_ConfigureDirection(tRs485Direction direction, unsigned int port, unsigned int device);Code language: C++ (

This function configures the direction for the BiSS-C communication on the serial port port of the device device, as clockwise or

counterclockwise. When counterclockwise is selected, the output angle θ is 2π-θ’, where θ’ is the angle received from the sensor.

It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

direction: direction (RS485_CW or RS485_CCW)

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_ConfigurePayload — Configure the frame payload

void BissC_ConfigurePayload(unsigned short n_bit_before, unsigned short n_bit_multiturn, unsigned short n_bit_sing

This function configures the expected structure of the frame received from the sensor. The function is based on the common

assumption that the single-turn and multi-turn values are placed side by side in the frame received from the sensor.

The single-turn and multi-turn resolutions cannot exceed 32 bits each, and the total payload length cannot exceed 64 bits (i.e.,

n_bit_before + n_bit_multiturn + n_bit_singleturn + n_bit_after ≤ 64).

In general, n_bit_before might be 0 and n_bit_

As an example, the function call for a E36CM-BIS-1311-1224 (Hohner) is BissC_ConfigurePayload(0, 24, 12, 8, <port>, <device>).

It has to be called in UserInit().

TPI Rev. F: Only serial port A is available.

Parameters

n_bit_before: number of bits before the multi-turn value in the frame received from the sensor

n_bit_multiturn: multi-turn resolution, i.e. number of bits composing the multi-turn value in the frame received from the

sensor

n_bit_singleturn: single-turn resolution, i.e. number of bits composing the single-turn value in the frame received from the

sensor

n_bit_after: number of bits after the single-turn value in the frame received from the sensor

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_ReadFrame — Read the current frame

void BissC_ReadFrame(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function triggers the CPU to read and interpret the last frame received from the sensor.

It must be called in the control interrupt routine.

TPI Rev. F: Only serial port A is available.

Parameters

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_GetPosition — Get the sensor’s position

float BissC_GetPosition(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function returns the single-turn position received from the sensor as an angle, in radians, in [0, 2π].

It must be called in the control interrupt routine, after BissC_ReadFrame.

TPI Rev. F: Only serial port A is available.

Parameters

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_GetMultiturnCounter — Get the sensor’s multi-turn counter

unsigned int BissC_GetMultiturnCounter(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function returns the multi-turn counter received from the sensor.

It must be called in the control interrupt routine, after BissC_ReadFrame.

TPI Rev. F: Only serial port A is available.

Parameters

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_GetDataValid — Get the data valid flag

unsigned int BissC_GetDataValid(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function returns the data valid flag indicating if a new data was received from the sensor. The flag being ‘1’ means that the

outputs of BissC_GetPosition and BissC_GetMultiturnCounter were updated since last interruption. If the flag is ‘0’, the outputs were

not updated and have the same value.

It must be called in the control interrupt routine, after BissC_ReadFrame.

TPI Rev. F: Only serial port A is available.

Parameters

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

BissC_ErrorCheck — Raise warning in case of communication error

void BissC_ErrorCheck(unsigned int port, unsigned int device);Code language: C++ (cpp)

This function checks the communication status and raises warnings in case of communication error(s).

It must be called in the control interrupt routine.

TPI Rev. F: Only serial port A is available.

Parameters

port: serial port, 0 (port A) or 1 (port B)

device: imperix device to address in a multi-device configuration (default: 0)

