Discrete PI controller implementation

TN105 | Posted on May 4, 2023 | Updated on August 7, 2025

-,

.

Jessy ANCAY Gabriel FERNANDEZ
Sales & Project Engineer Operations Manager

imperix « in imperix « in

Table of Contents

e General principles
Pl controller structure
o Controller type
o Controller structure
Digital implementation
Pl controller tuning_strategies
Pl controller configuration
o Integrator wind-up and anti-windup methods

o Reset

B-Box / B-Board implementation
o Simulink and PLECS
o C/C++ code

e References

This technical note addresses possible implementations for a discrete Pl controller
and provides general insight into Pl tuning strategies. It also includes practical
implementations for digital control, on Simulink, PLECS and C/C++.

General principles

Pl controllers certainly represent the most intuitive and widespread form of closed-
loop (feedback) control. As such, they are frequently implemented in both
continuous (analog) and discrete (digital) domains. This is notably due to their

simple structure and implementation, relying on two steps:

https://www.linkedin.com/in/jessy-ancay-a47615237/
https://www.linkedin.com/in/gabriel-fernandez-0942b6140/
https://imperix.com/software/acg-sdk/simulink/
https://imperix.com/software/acg-sdk/plecs/
https://imperix.com/software/cpp-sdk

e The difference between the desired setpoint and the measured variable is
computed. This value is considered as an error.

e The PI controller computes a control action that is proportional to this error
(proportional part) and makes sure that the process output agrees with the
setpoint in steady state (integral part).

Pl controller structure

Controller type

Imperix generally uses PI controllers and not PID controllers to avoid complexity and
instability issues related to the derivative action. More precisely, the high-frequency
gain of the derivative action can indeed cause amplification of measurement noise,
which is undesirable. Also, PID controllers generally bring only little improvement
when paired with first-order systems (which are very common in power electronics)

[1].

Controller structure

Pl controllers can be implemented either in parallel (also referred to as non-
interacting), series (interacting), or mixed form [2]. This article, will focus on the
parallel structure of Pl controllers as it allows for the full decoupling of the
proportional and integral term which makes manual tuning easier. The block diagram
below describes the implementation of a parallel Pl controller.

setpoint e(t)

Process

Process variable

Pl controller implementation, parallel form

Digital implementation

https://cdn.imperix.com/doc/wp-content/uploads/2021/03/General-principles.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/03/General-principles.png

The well-known continuous time transfer function of a Pl controller, given below,
should be discretized to be implemented in a digital controller.

(1) Cls)=hy+ 2

Here, k, and k; are the proportional and integral gain of the controller, respectively.

Usually, the main goals when discretizing a continuous function for a control system
are to preserve its frequency behavior and stability characteristics. To this end,
several possible discretization strategies exist, amongst which the three most
common are Forward Euler, Backward Euler, and Tustin [3]. Each method comes with
its advantages and drawbacks, which can be summarized as follows in order to
guide the choice of implementation [4]:

e Forward Euler: Simple and computationally efficient, but suffers from poor
stability.

e Backward Euler: Unconditionally stable, but more computationally intensive
than Forward Euler.

z—1
Tsz

(3) s=

e Tustin: Preserves continuous-time stability and offers superior frequency
accuracy compared to Euler methods, at the cost of higher implementation
complexity.

Where T is the discrete time interval.

Now, discretization methods being a broad topic and out of the scope of this article,
the following section will focus on the forward Euler method. But a similar approach
can be used for the other two aforementioned methods.

[An intuitive derivation of Discretization Functions]

To discretize a continuous-time system, we approximate derivatives using the
dz(t)

Forward Euler method. The continuous time fonction: T

the forward difference:

is then approximated with

dz(t) z[n+ 1]-z[n]

~

dt T,

This estimates the rate of change using the next time step (hence the forward
difference).

Taking the Z-transform of the above leads to:

z[n + 1]-z[n]

Z
—F

} = = 2 2X()

z—1

T

This results in mapping the continuous time derivation function % to in the z-

domain.

In the Laplace domain, differentiation corresponds to multiplication by s. Using the
forward Euler approximation, we substitute:

z—1
T,

s X

This allows us to translate a continuous-time model into a discrete-time one by

i P ~ 2—1
replacing s with s ~ =

The discretized equation of the PI controller using the forward Euler method would
then result in the following equation:

Y(2) 1

(5) C(2) = E(2) = Kp‘*'KiTsﬁ

In the end, as the objective is to implement a Pl controller inside of a digital control
system, the discretized PI controller can then be translated into the following
difference equations for run-time code generation:

y(k)
(6) I(k)

P(k)+ I(k) = kp-e(k) + I(k)
I(k—1)+k;-Ty-e(k—1)

Where e(k) is the error input (the difference between the targeted setpoint and the
measured value) and y(k) is the output of the PI controller.

Pl controller tuning strategies

Many different strategies can be used for the tuning of PI controllers, such as Ziegler
Nichols, loop shaping, optimization, pole placement, etc. Tuning should consider
tradeoffs between tracking performance, load perturbance rejection, effect of
measurement noise and other aspects, depending on the control requirements [2].

This section will further detail a popular optimization method, the magnitude
optimum, often chosen for its good tradeoff between simplicity and performance.
This tuning strategy will aim for a good response to setpoint changes, with the

potential drawback of poor perturbance rejection. Alternatively, the symmetric
optimum criterion can be used when the focus towards disturbance rejection [5].

The Magnitude (or Modulus) optimum tuning method’s objective is to design a
controller so that the overall system’s output (controller + plant) would exactly and
instantaneously reproduce its input. That is, the overall system’s transfer function
would be unity [6].

To derive the magnitude optimum'’s parameters, a first order plant model is
considered, described in the Laplace domain, by equation below:

The PI controller transfer function is rewritten as:

B 1+ sT,

®) Cl)=—7

The actuator delay is also taken into account and approximated by a first order
model as well:

1

9 D(s) = e(—STd,tot) P
(9) () 1+ sTq 0t

[Magnitude optimum criterion]

We then obtain the open loop transfer function for the whole system (PI controller,
actuator delay, plant):

1+ sT, 1 K,

Hop(s) = C(s)D(s)Py(s) = sT; 14 8Tgior 1+ sT

Choosing the controller parameter T,, = T3 to eliminate the dominant time constant
pole at s = —1/T1, we can simplify the open loop transfer function to:

K
sTi(1 + sTqzot)

Hor(s) =

Computing the closed loop transfer function yields:

1
HCL(S) =
1+ s% - 32—Ti11;ii1't”t

To compute the closed loop transfer function frequency gain, we can substitute s by
jw and take the magnitude of the denominator:

TiTaztot 9, Ti 9 Ti T tot
5) Tl) —2—%)

den| Hew (ju)|” = w'(

The low-frequency term (multiplier of w?) is set to 0 to get the remaining control
parameter T;

T;

(— =0 = T; =2K1T4z0t

This choice of T; aims to keep the closed loop transfer function close to one for
lower frequencies.

The obtained generic formulas for magnitude optimum, shown below, can then be
used for tuning PI controllers [5].

Tn :Tl

1) g ok Ty

For the symmetric optimum, the generic formulas are shown below [5]

T, = 4Td,tot

11
(11) T, = 8K1T],

Rewriting (8) as in (1) results in the following equations for K, and K;:

Kp = n/Ti

12) w —1m

The parameter T, represents the sum of all the delays in the system (from the data
acquisition to the control output). For a practical example of Pl controller tuning,
please refer to: Pl based current control.

Pl controller configuration

Several techniques are available to improve the behavior of PI controllers. For
instance, anti-windup strategies, setpoint weighting, feedforward, cascaded control

are some of the improvements that can be made to conventional PI controllers [1]. A
strategy to limit integrator windup is given in the section below.

Integrator wind-up and anti-windup methods

When the control system has to adjust for a large disturbance or setpoint variation,
the integrator will accumulate a significant error (wind-up) during the transient
phase. This can also happen when a physical variable reaches its limits (in the case
of a switched-mode power supply, the duty cycle is usually bounded between 0 and 1
for instance). So when the output finally reaches the reference, the large value
accumulated by the integral term will create a significant, undesired overshoot of the
output.

https://imperix.com/doc/implementation/pi-based-current-control
https://imperix.com/doc/implementation/cascaded-voltage-control

To get rid of this unwanted effect, anti-windup algorithms can be implemented.
Several techniques are commonly used such as [1]:

e Conditional integration
e Back calculation
e Automatic reset

The below illustration details the conditional integration algorithm, which will disable
the integrator when the two following conditions are fulfilled:

e The PI controller output saturates.
e The control and error signals have the same sign (When they don't, the
integrator can help push the controller’s output out of saturation).

— sat

. (S AND
e 1 reset

O—1F O3 {s —(O

w

Ki e Switch Integrator y
(- X
I{p L %

Conditional integration anti-windup algorithm

Reset

While the control task is not actively running (during system initialization, shutdown,
or when transitioning between control modes for instance) it is often necessary to
prevent the integrator from accumulating error. Pl controllers commonly provide an
external reset mechanism to address this. As part of the imperix blockset, the Core
state block outputs the appropriate reset signal which can directly be connected to
the external reset input of PI controllers. Obviously, this signal is only relevant in an
experimental setup and is of no use in simulation.

B-Box / B-Board implementation

Simulink and PLECS

The (discrete) PID controller blocks from Simulink and PLECS can generally be used
for the implementation of control algorithms. Please refer to the page Current control

https://imperix.com/doc/wp-content/uploads/2021/08/Sat_algo-2.png
https://imperix.com/doc/wp-content/uploads/2021/08/Sat_algo-2.png
https://imperix.com/doc/software/core-state
https://imperix.com/doc/software/core-state
https://imperix.com/doc/example/current-control-with-pi-controller

with a PI controller for configuration examples of both Simulink and PLECS PI
controllers.

C/C++ code

The imperix IDE provides numerous pre-written and pre-optimized functions.
Controllers such as P, PI, PID and PR are already available and can be found in
the controllers.h/.cpp files.

As for all controllers, Pl controllers are based on:

e A pseudo-object PIDcontroller, which contains pre-computed parameters as
well as state variables.

¢ A configuration function, meant to be called during UserInit(),
named ConfigPIDController().

¢ A run-time function meant to be called during the user-level ISR such
as UserInterrupt(), named RunPIController().

Note that this C/C++ implementation of the PI controller is slightly different from the
one described above. More information on this implementation can be found in [5].

E eclipse - BB3_CPP_Template/My_functions/
File Edit Source Refactor Mavigate 5e

‘% (E,] % External Tools

5 Project.. &3 “onnect = O
BEE|e ~
v = EB3_CPP_Termnplate
ﬁp Binaries
it Includes
w 2= AP

|| controllers.cpp

[n| controllers.h

[£] PlLs.cpp

[k PLLs.h

[n] sensors.h

[£] transformations.cpp
[A] transformations.h

= Debug
w = My_functions

[€] user.cpp
[A] user.h

=| BE_Contral.launch

config.dxv

[J

howtorename.tat
makefile.defs

[[

Project view in imperix CPP IDE

https://imperix.com/doc/example/current-control-with-pi-controller
https://cdn.imperix.com/doc/wp-content/uploads/2021/03/Imperix-Cpp-IDE.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/03/Imperix-Cpp-IDE.png

References

[1] A. Visioli, “Practical PID Control”, 2006

[2] Karl J. Astrém and Tore Higglund, “Advanced PID Control”, 1995

[3] Buso, S. and Mattavelli, P, “Digital Control in Power Electronics: Second Edition”,
2015

[4] Franklin, G.F, Powell, J. and D.Workman, M.L., “Digital Control of Dynamic
Systems”, 1998

[5] J. W. Umland and M. Safiuddin, “Magnitude and symmetric optimum criterion for
the design of linear control systems: what is it and how does it compare with the
others?,” in IEEE Trans. on Industry Applications, May-June 1990.

[6] Longchamp, R., “Commande numérique de systémes dynamiques: cours
d’automatique”, 2010

