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This technical note presents a possible implementation for the DC voltage control of a power converter. First, the note
introduces the general operating principles of cascaded control and then details a possible design methodology. Then, an
example of cascaded voltage control for a boost converter is provided. A possible control implementation on the B-Box

RCP or B-Board PRO  is introduced for both C/C++ and ACG  implementations. Finally, simulation and experimental results
are compared and discussed.

General principles of cascaded control

Cascaded control is a well-known control strategy, which is often applied to second-order systems (or even of higher-order)
that are characterized by the following criteria:

All state variables can be measured.
The system can be “decomposed” into first-order systems, whose dynamics (i.e. time constants) are intrinsically
rather different. It is generally agreed that an inner loop must be at least 3-4 times faster than its directly
“surrounding” loop. In practice, this may possibly be guaranteed by design (component dimensioning).
Obviously, the inner loop(s) must have a direct impact on the outer loop(s).
Disturbances impacting the “fast” loop(s) are less severe than those impacting the slower loop(s). This way,
cascaded control can achieve its main goal, which is to reject the smaller inner perturbations before they propagate to
the rest of the system.

Typical cascaded control loop

Example of DC bus cascaded voltage control
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In this note, it is proposed to study the DC bus voltage control of a Step-up boost converter, whose prerequisite is the
implementation of a PI controller.

Boost converter schematic

This example features two state variables, namely the inductor current and the capacitor voltage. From a behavioral
standpoint:

The inductor current can be controlled by the voltage  .
The capacitor voltage can be controlled by the current  .

General Kirchhoff circuit laws allow us to determine the following equations:

In the Laplace domain, this translates into:

System-level modeling

An intuitive way to represent the behavior of this circuit is to separate the system into two distinct subsystems, as shown
below. This representation also complies with the established system equations.

Model of a boost converter with cascaded voltage control

Plant model

The inductor and the capacitor are modeled as:
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The measurements of the currents   and  , and the voltages   and   are generally modeled using a low-pass filter
approximation, or they are neglected. The sampling corresponds to a zero-order hold (ZOH) which introduces a lag, which is
the sampling delay.

Cascaded control

The control algorithm consists of two digital PI controllers and some basic mathematic operations. The whole algorithm
requires a certain amount of computation time, which is represented as a delay.

Modulation

The Pulse-Width Modulation (PWM) is also generally modeled as a simple delay.

Digital implementation and tuning of cascaded controller

Once the different control loops have been properly identified, each state variable can be controlled separately. In this
example, both control loops are proposed to be implemented using PI controllers.

The design of the current control loop is detailed in Basic PI control implementation (TN105).

For the design of the voltage control loop, different methods are used in the literature. Those methods are well detailed and
explained in [1] and [2]. In this article, the Symmetrical Optimum (SO) will be used. The controller parameters are defined as:

With   the equivalent delay of the closed-loop current controller transfer function, defined as [2, 3]:

The parameter   represents the sum of all the small delays in the system, such as the sampling delay or the modulation
delay mentioned above. The product note PN142 explains how to determine the total delay of the system.

The parameter    is used to change the pole placement of the control function [2]. Low values give a small phase margin
and high oscillations while increasing the value of   may lead to better damping, but a slower response. For the example
provided in this technical note, this parameter is chosen as 4.
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B-Box / B-Board implementation

ACG SDK implementation using Simulink

ACG SDK simplifies programming imperix controllers through automatic code generation. Control logic is implemented
using standard Simulink blocks, and the ACG block set offers pre-built blocks for configuring the imperix controller’s I/O.
The figure below illustrates this control implementation.
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Control implementation using ACG SDK in Simulink

ACG SDK also enables offline simulation using Simulink/PLECS. By running the model in simulation mode, the control logic
can be validated against a user-defined plant model. Furthermore, ACG SDK’s power library includes models of imperix
power hardware, such as the PEB 8038 half-bridge module used in this example, built using the Simscape Electrical Toolbox
from MathWorks. The figure below illustrates the implementation of the plant model.

Plant modeled using imperix power library and Simscape Electrical

Software resources

TN108_cascaded_voltage_controlDownload

C/C++ code

The imperix IDE provides numerous pre-written and pre-optimized functions. Controllers such as P, PI, PID and PR are
already available and can be found in the controllers.h/.cpp files.

As for all controllers, PI controllers are based on:

A pseudo-object PIDcontroller, which contains pre-computed parameters as well as state variables.
A configuration function, meant to be called during UserInit(), named ConfigPIDController().
A run-time function, meant to be called during the user-level ISR, such as UserInterrupt(),
named RunPIController().

The necessary parameters are documented within the controllers.h header file. They are namely:

Kp and Ki, proportional and integral gains, respectively.
Td the derivative time-constant, which must be set to zero for a PI.
limup and limlow, the upper and lower saturation thresholds of the output.
Ts, corresponding to the sampling (interrupt) period.
N, the filtering factor of the derivative term, which is not used for a PI.
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Implementation example

Initialization

#include "../API/controllers.h"
PIDController mycontroller_Ib;
PIDController mycontroller_Udc;
 
float Kp_Ib = 18.75;
float Ki_Ib = 165;
float limup_Ib = 500;
float limlow_Ib = -500;
 
float Kp_Udc = 0.195;
float Ki_Udc = 73.125;
float limup_Udc = 15;
float limlow_Udc = -15;
 
tUserSafe UserInit(void)
{
    //... some code
    ConfigPIDController(&mycontroller_Ib, Kp_Ib, Ki_Ib, 0, limup_Ib, limlow_Ib, SAMPLING_PERIOD, 0);
    ConfigPIDController(&mycontroller_Udc, Kp_Udc, Ki_Udc, 0, limup_Udc, limlow_Udc, SAMPLING_PERIOD, 0);
    //... some code
    return SAFE;
}Code language: C++ (cpp)

Interrupt

  tUserSafe UserInterrupt(void)
{
    //... some code
    Ib_ref = RunPIController(&mycontroller_Udc, Udc_ref - Udc);
    UL_ref = RunPIController(&mycontroller_Ib, Ib_ref - Ib);
    //... some code
    return SAFE;
}Code language: C++ (cpp)

Results

The cascaded voltage control has been tested with the boost converter example shown in  PI-based DC current control

(TN105).
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A step was performed on the DC bus voltage reference, in both simulation and experimental modes. The following graphs
show a comparison between both results. An excellent agreement can be observed.

Experimental results of cascaded voltage control of a boost converter

To go further

Beyond the example of a boost converter, the robust control architecture presented in this article can be used in many
different DC-link-based converter topologies. This also applies to 3-phase converters such as the active front end (TN166)

and more complex cascaded topologies including cascaded H-bridges (TN165) used in solid-state transformers (AN015)

and medium-voltage STATCOMs (AN013).
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