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This article presents the basic theory of operation of proportional resonant

controllers, and introduces a possible implementation for the control of single-phase

voltage source inverters. The corresponding software is given for Simulink and C++

code and is made available for download.

What is a proportional resonant controller?

Proportional resonant controllers (abbreviated PR controllers) are a particular type of

transfer function that are often implemented for the closed-loop control of systems

with a sinusoidal behavior. As their name indicates, they possess both a proportional

and a resonant term, which can be tuned independently. When needed, additional

resonant terms can also be added to attenuate specific harmonics. 
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In power electronics, proportional resonant controllers (PR) have attracted

significant interest for AC current/voltage control applications due to their

performance and simple implementation.

Benefits of proportional resonant controllers

In DC applications, conventional PI controllers provide excellent performance,

notably a minimal steady-state error, thanks to the (almost) infinite DC gain provided

by the integral control action. However, in AC applications, PI controller(s) in the

stationary reference frame inevitably present a delayed tracking response, because

finite gains at the fundamental frequency cannot prevent steady-state error.

A well-known countermeasure to this shortcoming is the implementation of the

control within a synchronous reference frame. This means that PI controller(s) are

implemented inside a rotating reference frame (dq), which is synchronized with the

AC frequency (e.g. of the grid or the electric motor, see TN106). This allows re-

locating the (almost) infinite DC gain at the desired frequency, namely 50/60Hz (or

the motor rotating speed).

Proportional resonant controllers offer an alternative to this conventional approach.

Indeed, as they operate directly in the stationary reference frame, no coordinate

transformations are required. Furthermore, their resonant term(s) offer(s) a finite –

but very high – gain at the targeted AC frequency, which achieves the same tracking

and perturbation rejection capabilities as PI controller(s) in a rotating reference

frame (dq-control).

In single-phase systems, the fact that no Park transformation is needed is a further

and significant benefit, because the formulation of the direct and quadrature axes is

not obvious (see TN124 on fictive axis emulation).

In three-phase systems, controlling unbalanced AC currents and voltages in a

stationary reference frame overcomes the need to decouple the controlled variables,

which would otherwise be necessary in the rotating reference frame (dq). This

presents a significant advantage of the PR controller in a stationary reference frame

(abc, or ) compared to PI controller(s) in the synchronous reference frame (dq). A

typical example of this is found in active power filters.

Operating principles of proportional resonant

controllers
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In essence, the transfer function of proportional resonant (PR) controllers can be

derived from a PI controller in the synchronous reference frame (dq) using the

Laplace and Park transformations. The result is as follows [1] :

where  designates the target reference current frequency. In this expression, the

denominator term  creates infinite control gain at .

Practically, this expression may be difficult to implement as a digital controller, which

is why a more practical alternative is to introduce some damping around the

resonant frequency, resulting in:

were   designates the resonant cut-off frequency (i.e. width of the resonant filter).

In this second expression, the gain at   is now finite, but still high enough to enforce

a sufficiently small steady-state error. Interestingly, widening the bandwidth around 

  also offers increased tolerance towards slight frequency deviations, such as in

most practical grid-tied applications.

Digital control implementation

A practical implementation can be easily derived using the bilinear (Tustin)

transform. The resulting discrete transfer function for the resonant term, discretized

with a period  , yields:

Once transformed into a difference equation, the resonant part yields:

This difference equation can be easily used for generating run-time code. The

corresponding block diagram is given below and can be easily replicated in Simulink

or PLECS. A similar implementation is given in [2].
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Proportional resonant controller implementation example

It is worth noting that the gains  and  depend on the fundamental frequency

. As such, the PR controller can be made frequency-adaptive by calculating these

coefficients at each execution step using frequency estimation methods such as a

SOGI-PLL for computing .

Tuning and performance evaluation

Proportional resonant controllers can be tuned relatively easily. In fact, three gains

must be determined:  and . The proportional gain  defines the bandwidth

and the phase margin in the same way as a PI controller. It can thus be tuned

similarly, for example using the magnitude optimum method. The parameters  and

, on the other hand, define the “height” and “width” of the resonance peak. The

following figures show the impact of these parameters on the controller transfer

function. Further details regarding the tuning can notably be found in [3].

Transfer function of the PR controller with various parameters
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Additionally, the following figure illustrates the step response of the proposed

resonant controller for various values of the resonant gain .

Tuning effect of a PR controller
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B-Box / B-Board implementation

Simulink

Download Simulink model TN110_PR_Controller

The Simulink model provided above contains a subsystem that uses the above-

presented resonant controller implementation. This block can easily be integrated
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into any control algorithm. Besides, the provided dialog box offers simple

configuration parameters.

Proposed Simulink implementation of the discrete PR controller

PR controller parameters

C/C++ code

The imperix IDE gives access to a library containing numerous pre-written and pre-

optimized functions. Controllers such as P, PI, PID and PR are already available and

can be found in the controllers.h/.cpp files.

As for all controllers, proportional resonant controllers are based on:

A pseudo-object PRcontroller, which contains pre-computed parameters as

well as state variables.
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A configuration function, meant to be called during UserInit(),

named ConfigPrController().

A run-time function, meant to be called during the user-level ISR, such

as UserInterrupt(), named RunPrController().

The necessary parameters are documented within the controller.h header file. They

are namely:

Kp and Ki, proportional and integral gain, respectively.

wres, which is the nominal frequency (center of the resonant term, in rad/s.), as

well as wdamp , the “width” of the resonant term (limits the quality factor of the

resonant term).

tsample, corresponding to the sampling (interrupt) period.

Implementation example

#include "../API/controllers.h"
PrController mycontroller;   #resonant controller object
 
float Kp = 10.0;
float Ki = 500.0;
float w0 = TWO_PI*50.0;
float wc = 10.0;
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tUserSafe UserInit(void)
{
    ConfigPrController(&mycontroller, Kp, Ki, w0, wc, SAMPLING_PERIOD);
    return SAFE;
}Code language: C++ (cpp)

tUserSafe UserInterrupt(void)
{
    //... some code
    Evsi = Vgrid + RunPrController(&mycontroller, Igrid_ref - Igrid);
    //... some code
    return SAFE;
}Code language: C++ (cpp)

Experimental results

In order to illustrate the performance of the proposed PR controller implementation,

current control results are shown below. A current reference step is performed both

in simulation (dark red) as well as using an experimental setup (light red). The

following graphs show a comparison between both results :

Experimental results of a current reference step with PR controller

As it can be seen, the current matches the given reference in steady state. However,

slight discrepancies between simulation and experimental results are observed due

to harmonic distortions present on the grid.
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