
Proportional resonant controller

TN110 | Posted on March 23, 2021 | Updated on June 5, 2025

Antonin STAMPBACH

Development Engineer

•

Nicolas CHERIX

Head of Engineering

•

Table of Contents

What is a proportional resonant controller?

Benefits of proportional resonant controllers

Operating principles of proportional resonant controllers

Digital control implementation

Tuning and performance evaluation

Academic references

B-Box / B-Board implementation

Simulink

C/C++ code

Implementation example

Experimental results

This article presents the basic theory of operation of proportional resonant

controllers, and introduces a possible implementation for the control of single-phase

voltage source inverters. The corresponding software is given for Simulink and C++

code and is made available for download.

What is a proportional resonant controller?

Proportional resonant controllers (abbreviated PR controllers) are a particular type of

transfer function that are often implemented for the closed-loop control of systems

with a sinusoidal behavior. As their name indicates, they possess both a proportional

and a resonant term, which can be tuned independently. When needed, additional

resonant terms can also be added to attenuate specific harmonics.

http://www.linkedin.com/in/antonin-stampbach-a75a87205
https://www.linkedin.com/in/nicolas-cherix-268a2b83/

In power electronics, proportional resonant controllers (PR) have attracted

significant interest for AC current/voltage control applications due to their

performance and simple implementation.

Benefits of proportional resonant controllers

In DC applications, conventional PI controllers provide excellent performance,

notably a minimal steady-state error, thanks to the (almost) infinite DC gain provided

by the integral control action. However, in AC applications, PI controller(s) in the

stationary reference frame inevitably present a delayed tracking response, because

finite gains at the fundamental frequency cannot prevent steady-state error.

A well-known countermeasure to this shortcoming is the implementation of the

control within a synchronous reference frame. This means that PI controller(s) are

implemented inside a rotating reference frame (dq), which is synchronized with the

AC frequency (e.g. of the grid or the electric motor, see TN106). This allows re-

locating the (almost) infinite DC gain at the desired frequency, namely 50/60Hz (or

the motor rotating speed).

Proportional resonant controllers offer an alternative to this conventional approach.

Indeed, as they operate directly in the stationary reference frame, no coordinate

transformations are required. Furthermore, their resonant term(s) offer(s) a finite –

but very high – gain at the targeted AC frequency, which achieves the same tracking

and perturbation rejection capabilities as PI controller(s) in a rotating reference

frame (dq-control).

In single-phase systems, the fact that no Park transformation is needed is a further

and significant benefit, because the formulation of the direct and quadrature axes is

not obvious (see TN124 on fictive axis emulation).

In three-phase systems, controlling unbalanced AC currents and voltages in a

stationary reference frame overcomes the need to decouple the controlled variables,

which would otherwise be necessary in the rotating reference frame (dq). This

presents a significant advantage of the PR controller in a stationary reference frame

(abc, or) compared to PI controller(s) in the synchronous reference frame (dq). A

typical example of this is found in active power filters.

Operating principles of proportional resonant

controllers

αβ

https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/implementation/vector-current-control
https://en.wikipedia.org/wiki/Direct-quadrature-zero_transformation
https://imperix.com/doc/implementation/fictive-axis-emulation-fae-for-single-phase-inverter
https://imperix.com/doc/implementation/active-power-filters-for-harmonics-mitigation

In essence, the transfer function of proportional resonant (PR) controllers can be

derived from a PI controller in the synchronous reference frame (dq) using the

Laplace and Park transformations. The result is as follows [1] :

where designates the target reference current frequency. In this expression, the

denominator term creates infinite control gain at .

Practically, this expression may be difficult to implement as a digital controller, which

is why a more practical alternative is to introduce some damping around the

resonant frequency, resulting in:

were designates the resonant cut-off frequency (i.e. width of the resonant filter).

In this second expression, the gain at is now finite, but still high enough to enforce

a sufficiently small steady-state error. Interestingly, widening the bandwidth around

 also offers increased tolerance towards slight frequency deviations, such as in

most practical grid-tied applications.

Digital control implementation

A practical implementation can be easily derived using the bilinear (Tustin)

transform. The resulting discrete transfer function for the resonant term, discretized

with a period , yields:

Once transformed into a difference equation, the resonant part yields:

This difference equation can be easily used for generating run-time code. The

corresponding block diagram is given below and can be easily replicated in Simulink

or PLECS. A similar implementation is given in [2].

GC(s) = Kp +
2Kis

s2 + ω2
0

ω0

s2 + ω2
0 ω0

GC(s) = GCp(s) + GCr(s) = Kp +
2Kiωcs

s2 + 2ωcs + ω2
0

ωc

ω0

ω0

Ts

GCr(z) =
Y (z)

E(z)
=

a1(1 − z−2)

b0 + b1z−1 + b2z−2
 with

a1 = 4KiTsωc

b0 = T 2
s ω2

0 + 4Tsωc + 4

b1 = 2T 2
s ω2

0 − 8

b2 = T 2
s ω2

0 − 4Tsωc + 4

y(k) =
1

b0
[a1 ⋅ e(k) − a1 ⋅ e(k − 2) − b1 ⋅ y(k − 1) − b2 ⋅ y(k − 2)]

Proportional resonant controller implementation example

It is worth noting that the gains and depend on the fundamental frequency

. As such, the PR controller can be made frequency-adaptive by calculating these

coefficients at each execution step using frequency estimation methods such as a

SOGI-PLL for computing .

Tuning and performance evaluation

Proportional resonant controllers can be tuned relatively easily. In fact, three gains

must be determined: and . The proportional gain defines the bandwidth

and the phase margin in the same way as a PI controller. It can thus be tuned

similarly, for example using the magnitude optimum method. The parameters and

, on the other hand, define the “height” and “width” of the resonance peak. The

following figures show the impact of these parameters on the controller transfer

function. Further details regarding the tuning can notably be found in [3].

Transfer function of the PR controller with various parameters

b0, b1, b2

ω0

ω0

Kp, Ki, ωc Kp

Ki

ωc

https://imperix.com/doc/wp-content/uploads/2024/04/PR.png
https://imperix.com/doc/wp-content/uploads/2024/04/PR.png
https://imperix.com/doc/implementation/sogi-pll
https://imperix.com/doc/implementation/pi-controller/#MO
https://imperix.com/doc/wp-content/uploads/2024/04/Capture-decran-2024-04-30-a-14.54.42-1.png
https://imperix.com/doc/wp-content/uploads/2024/04/Capture-decran-2024-04-30-a-14.54.42-1.png

Additionally, the following figure illustrates the step response of the proposed

resonant controller for various values of the resonant gain .

Tuning effect of a PR controller

Academic references

[1] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM

inverters with zero steady-state error,” in IEEE Trans. on Pow. Elec., Vol. 18, N°. 3, May

2003.

[2] R. Teodorescu, F. Blaabjerg, M. Liserre and P. C. Loh, “Proportional resonant

controllers and filters for grid-connected voltage-source converters,” in IEE Proc. on

Electr. Power Appl., Vol. 153, N°. 5, Sep. 2006.

[3] D. G. Holmes, T. A. Lipo, B. P. McGrath and W. Y. Kong, “Optimized Design of

Stationary Frame Three Phase AC Current Regulators,” in IEEE Trans. on Pow. Elec.,

Nov. 2009.

B-Box / B-Board implementation

Simulink

Download Simulink model TN110_PR_Controller

The Simulink model provided above contains a subsystem that uses the above-

presented resonant controller implementation. This block can easily be integrated

Ki

https://imperix.com/doc/wp-content/uploads/2024/04/PR_KI-3.png
https://imperix.com/doc/wp-content/uploads/2024/04/PR_KI-3.png
https://doi.org/10.1109/TPEL.2003.810852
http://dx.doi.org/10.1049/ip-epa:20060008
https://doi.org/10.1109/TPEL.2009.2029548
https://imperix.com/doc/wp-content/uploads/2021/03/TN110_PR_Controller_Simulink.zip
https://imperix.com/doc/wp-content/uploads/2021/03/TN110_PR_Controller_Simulink.zip

into any control algorithm. Besides, the provided dialog box offers simple

configuration parameters.

Proposed Simulink implementation of the discrete PR controller

PR controller parameters

C/C++ code

The imperix IDE gives access to a library containing numerous pre-written and pre-

optimized functions. Controllers such as P, PI, PID and PR are already available and

can be found in the controllers.h/.cpp files.

As for all controllers, proportional resonant controllers are based on:

A pseudo-object PRcontroller, which contains pre-computed parameters as

well as state variables.

https://imperix.com/doc/wp-content/uploads/2024/04/Simulink-2.png
https://imperix.com/doc/wp-content/uploads/2024/04/Simulink-2.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/03/PR_mask_parameters.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/03/PR_mask_parameters.png

A configuration function, meant to be called during UserInit(),

named ConfigPrController().

A run-time function, meant to be called during the user-level ISR, such

as UserInterrupt(), named RunPrController().

The necessary parameters are documented within the controller.h header file. They

are namely:

Kp and Ki, proportional and integral gain, respectively.

wres, which is the nominal frequency (center of the resonant term, in rad/s.), as

well as wdamp , the “width” of the resonant term (limits the quality factor of the

resonant term).

tsample, corresponding to the sampling (interrupt) period.

Implementation example

#include "../API/controllers.h"
PrController mycontroller; #resonant controller object

float Kp = 10.0;
float Ki = 500.0;
float w0 = TWO_PI*50.0;
float wc = 10.0;

https://imperix.com/doc/wp-content/uploads/2021/03/Imperix-Cpp-IDE.png
https://imperix.com/doc/wp-content/uploads/2021/03/Imperix-Cpp-IDE.png

tUserSafe UserInit(void)
{
 ConfigPrController(&mycontroller, Kp, Ki, w0, wc, SAMPLING_PERIOD);
 return SAFE;
}Code language: C++ (cpp)

tUserSafe UserInterrupt(void)
{
 //... some code
 Evsi = Vgrid + RunPrController(&mycontroller, Igrid_ref - Igrid);
 //... some code
 return SAFE;
}Code language: C++ (cpp)

Experimental results

In order to illustrate the performance of the proposed PR controller implementation,

current control results are shown below. A current reference step is performed both

in simulation (dark red) as well as using an experimental setup (light red). The

following graphs show a comparison between both results :

Experimental results of a current reference step with PR controller

As it can be seen, the current matches the given reference in steady state. However,

slight discrepancies between simulation and experimental results are observed due

to harmonic distortions present on the grid.

https://imperix.com/doc/wp-content/uploads/2024/04/PR_EXP-1.png
https://imperix.com/doc/wp-content/uploads/2024/04/PR_EXP-1.png

