
Maximum Power Point Tracking (MPPT) algorithms

TN117 | Posted on March 25, 2021 | Updated on June 24, 2025

Nicolas CHERIX

Head of Engineering

•

Table of Contents

Software resources

Principles of operation

Photovoltaic solar panel example

Maximum Power Point Tracking algorithms

MPPT example for solar inverter

P&O MPPT algorithm basics

Maximum Power Point Tracking with Simulink

MPPT with PLECS

Maximum Power Point Tracking with C/C++ code

Academic references

Maximum Power Point Tracking is a family of control algorithms that aims at optimizing

the use of a power source that possesses a fluctuating power profile.

Indeed, some power sources, like solar panels, present power characteristics that strongly

depend on the operating conditions. For instance, the cloud coverage significantly impacts

the capability of a panel to deliver electricity. As such, maximizing the extracted power

requires identifying – and tracking – the operating point that provides the highest power

level as a function of the operating conditions.

Therefore, Maximum Power Point Tracking (MPPT) is often applied in renewable energy

systems – e.g. photovoltaic plants or wind turbines – as their power delivery capability

varies significantly and in an unpredictable manner. Other special operating points may be

interesting to track, such as the maximum efficiency point tracking (MEPT), or other

optimum, e.g. related to operating costs.

Software resources

Maximum Power Point Tracking algorithm only (Simulink model)Download

https://www.linkedin.com/in/nicolas-cherix-268a2b83/
https://imperix.com/doc/wp-content/uploads/2025/06/MPPT.slx
https://imperix.com/doc/wp-content/uploads/2025/06/MPPT.slx

TN117_PV_inverter_SimulinkDownload

Principles of operation

For practically all real power sources, the power that can be extracted varies with the

operating point. While electrical sources are related to the voltage/current pair, the same

principle also applies to force/speed, flux/surface, etc.

In all cases, the inevitable internal resistance (or equivalent quantity) limits the maximum

possible output power. Non-linear or more complex characteristics also exist, but with the

same result: the maximum power point is not located at the [max. voltage · max. current]

point (or equivalent quantity). Therefore, the operating point that delivers the maximum

power must be constantly tracked by searching for the best voltage · current combination.

Photovoltaic solar panel example

For instance, photovoltaic panels (PV panels) possess a well-known output characteristic,

featuring an internal resistance that quickly decreases close to the open-circuit voltage

(assuming a current source model).

This results in a bump-shaped power-voltage characteristic, whose top is typically located

between 60-80% of the open-circuit voltage. This point is however not fixed but varies with

the output current, which depends itself on the temperature and irradiance, i.e. the

operating conditions of the PV cells themselves.

https://imperix.com/doc/wp-content/uploads/2025/06/TN117_PV_inverter_Simulink.zip
https://imperix.com/doc/wp-content/uploads/2025/06/TN117_PV_inverter_Simulink.zip

Typical IV-PV curves of a solar panel

In some cases (such as, to some extent, photovoltaic systems), the output characteristics

(here I-V) are relatively well-known and precise, such that they can be used to locate the

maximum power point using look-up tables. This is however not the case for all systems,

motivating the use of more empirical approaches.

Maximum Power Point Tracking algorithms

To date, numerous maximum power point tracking algorithms have been proposed, with

various trade-offs between performance (tracking speed, accuracy) and complexity (need

for sensors, mathematical modeling, computation burden, etc.).

MPPT example for solar inverter

P&O MPPT algorithm basics

Among other possible algorithms, the Perturb and Observe (P&O) tracking algorithm

actively varies the current set-point – i.e. adds a small perturbation – and observes the

corresponding impact on the output power. Depending on whether that perturbation tends

to increase or decrease the output power, the current setpoint is respectively increased or

decreased accordingly.

https://imperix.com/doc/wp-content/uploads/2021/03/image-79.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-79.png

In other words, if adding a small ΔI to the current setpoint increases the resulting output

power, then the subsequent current setpoint is further increased. Reciprocally, if a positive

ΔI tends to reduce the output power, then the subsequent current reference is reduced by

ΔI.

The entirely empirical approach of the Perturb and Observe algorithm requires that:

The requested setpoint is correctly followed, meaning that the current control (if any)

is not saturated and can reach steady state before the result is evaluated.

There is only one global maximum power point.

As such, this maximum power point tracking algorithm is designed for use as part of a

discretized process that is slower than the current control dynamics. This can typically be

implemented using a multi-rate technique, where the current control is executed within the

main control interrupt (fast control loop) and the MPPT algorithm executed within a

secondary control interrupt (slow control loop).

Typical execution of a Pertub and Observe MPPT

Maximum Power Point Tracking with Simulink

The proposed maximum power point tracking algorithm can be implemented as shown

below. It requires the introduction of a slower control rate for the MPPT itself. The

management of multiple control rates within Simulink is further explained in Multi-rate

control with Simulink (PN145).

https://imperix.com/doc/wp-content/uploads/2021/03/image-81.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-81.png
https://imperix.com/doc/help/multi-rate-control-with-acg-sdk-on-simulink
https://imperix.com/doc/help/multi-rate-control-with-acg-sdk-on-simulink

Maximum power point tracking implementation overview in Simulink

The corresponding mask requires the following parameters:

Upper saturation threshold: Maximum output value.

Lower saturation threshold: Minimum output value.

Current reference step (delta): Current increment added (or subtracted) for

the previous setpoint.

Initial current reference: Initial value at startup.

MPP Tracking rate: The control period used for the execution of the MPPT

algorithm (here 10x slower than the main control interrupt rate).

imperix P&O MPPT configuration on Simulink

MPPT with PLECS

In PLECS, the proposed maximum power point tracking algorithm can be implemented as

shown below. As in Simulink, it requires the introduction of a slower control rate for the

https://imperix.com/doc/wp-content/uploads/2021/03/image-82.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-82.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-83.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-83.png

MPPT itself. The management of multiple control rate within PLECS is further explained

in Multi-rate control with PLECS (PN155).

Maximum power point tracking implementation overview in PLECS

The corresponding mask requires the following parameters:

Upper saturation threshold: Maximum output value.

Lower saturation threshold: Minimum output value.

Current reference step (delta): Current increment added (or subtracted) for

the previous setpoint.

Initial current reference: Initial value at startup.

MPP Tracking rate: The control period used for the execution of the MPPT

algorithm (here 10x slower than the main control interrupt rate).

Low pass filter sample time: The sample time used for the average of the PV

voltage and current. It should be the interruption period.

imperix P&O MPPT configuration in PLECS

https://imperix.com/doc/help/multi-rate-control-on-plecs-acg-sdk
https://imperix.com/doc/wp-content/uploads/2021/03/image-84.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-84.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-85.png
https://imperix.com/doc/wp-content/uploads/2021/03/image-85.png

Maximum Power Point Tracking with C/C++ code

The imperix CPP SDK provides pre-written routines for maximum power point tracking. As

for control-related routines, the MPPT is based on:

A pseudo-object MPPTracker, which contains pre-computed parameters as well as

state variables.

A configuration function, meant to be called during UserInit(),

named ConfigMPPTracker().

A run-time function, meant to be called during a slow routine, such

as SlowSubTask(), named RunMPPTracker().

Suitable C code for the implementation of the Perturb and Observe MPPT algorithm is

given below. The necessary parameters are documented within the controller.h header file.

#include "user.h"
#include "../API/controllers.h" // Discrete-time controllers

MPPTracker string1_mppt, string2_mppt; // Maximum Power Point Trackers
PIDController Ipv_reg; // Controller for the PV current

tUserSafe UserBackground();
void SlowSubTask();
float SubTaskTimer = 0.0;
bool SubTaskFlag = false;

USER_SAFE UserInit(void)
{
 // Configure the main timebases on CLOCK_0:
 Clock_SetPeriod(CLOCK_0, (int)(SWITCHING_FREQUENCY));

 // Configure the interrupts:
 ConfigureMainInterrupt(UserInterrupt, CLOCK_0, 0.5);
 RegisterBackgroundCallback(UserBackground);

 // Configure the PI controllers:
 ConfigPIDController(&Ipv1_reg, 12.0, 0.3, 0.0, 60, -60, SAMPLING_PERIOD, 10);

 // Configure and initialize the MPP-trackers:
 #define increment 0.01
 ConfigMPPTracker(&mymppt, increment, 7.0, 16.0, 1.5, 0.01);

 return SAFE;
}

tUserSafe UserInterrupt(void)
{
 // Measure all the necessary quantities:
 Upv = Adc_GetValue(8); // Voltage on the PV string
 Ipv = -Adc_GetValue(0); // PV current

 // Execute the current controllers on the MPPT string:
 Epv = Upv - RunPIController(&Ipv_reg, Ipv_ref - Ipv);
 CbPwm_SetDutyCycle(PWM_CHANNEL_3, Epv/Udc);

 // Compute the power drawn from the PV panel:
 #define k_iir_lpf 0.05
 Ppv = k_iir_lpf* (Upv*Ipv) + (1.0-k_iir_lpf)* Ppv;

 SubTaskTimer += SWITCHING_PERIOD;
 if(SubTaskTimer >= MPPTPERIOD){
 SubTaskTimer = SubTaskTimer - MPPTPERIOD;
 SubTaskFlag = true;
 }

 return SAFE;
}

tUserSafe UserBackground()
{
 if(SubTaskFlag)
 {
 SlowSubTask();
 SubTaskFlag = false;
 }
 return SAFE;
}

void SlowSubTask()
{
 // When appropriate, execute the MPPT algorithm:
 if (enable_MPPT==1){
 // Run the Maximum Power Point Tracking (MPPT) algorithm:
 Ipv_ref = RunMPPTracking(&string_mppt, Ipv, Ppv);
 }
 else{
 // Leave the setpoints unaltered
 }
}Code language: C++ (cpp)

Academic references

[1] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point

Tracking Techniques,” in IEEE Transactions on Energy Conversion, June 2007.

