
FPGA-based hysteresis controller for three-phase

inverter using HDL Coder

TN121 | Posted on April 2, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Software resources

FPGA logic implementation

Validation of the FPGA-based hysteresis controller by simulation

Testbench

Control loop simulation

Integration of the HDL design in the FPGA firmware

This technical note shows how the implementation of an FPGA-based hysteresis

controller can be conducted, starting from the modeling stage, following with

automated VHDL code generation with HDL Coder, and finishing with its validation in

simulation. As an application example, this note uses the hysteresis current control

already shown in TN120.

HDL Coder is a MATLAB tool that generates HDL code from Matlab or Simulink

models, which can then be integrated into an FPGA. This approach can greatly

accelerate rapid prototyping as the design is performed from a higher level of

abstraction. The second benefit is the possibility to simulate the FPGA logic in a

control loop, directly from within Simulink.

This example has been written before the release of the newest FPGA control

template, as such is does not implement the latest recommendations such as the

use of AXI4-Stream interfaces.

To find all FPGA-related notes, you can visit FPGA development homepage.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/implementation/hysteresis-current-control
https://imperix.com/doc/help/matlab-hdl-coder
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

Software resources

hysteresis_current_control_Simulink_HDL_coderDownload

hysteresis_current_control_Simulink_testbenchDownload

FPGA logic implementation

Below is the hysteresis current controller (also called direct current control [DCC])

logic implementation is taken from TN120.

An equivalent logic can be transcribed in Simulink using HDL Coder-compatible

blocks, as shown in the next figure. The Data Type Conversion blocks force the input

signals to be interpreted as signed integers, the Enabled Subsystems infer the flip-

flop registers, and the Stateflow’s State Transition Table block is used to easily

implement the state machine.

https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_ctrl_loop_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_ctrl_loop_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_testbench_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_testbench_2015a.slx
https://imperix.com/doc/implementation/hysteresis-current-control
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-108.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-108.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-114.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-114.png

Validation of the FPGA-based hysteresis controller

by simulation

The validation of the FPGA-based hysteresis controller is done in two phases. First,

the design is placed in a testbench model and stimulated with various test signals.

The second phase is the integration of the design in the control model to simulate its

behavior in a closed control loop.

Testbench

The tests must be as comprehensive as possible to see if the design operates as

expected in all conditions. The following figure illustrates one of the validation steps,

where the state machine transitions are tested by applying a sinusoidal signal to

meas and a fixed value to the other inputs. The results are visually inspected using a

scope that shows that the PWM signal has the correct state and the transition

occurs when the difference between meas and ref is equal to tol.

Control loop simulation

The second phase is the integration of this design within the control model already

used in TN120. The objective is to simulate its behavior in a closed control loop. The

simulated FPGA logic block takes as input the ADC values, scaled to match the

actual 16-bit ADC output provided by the imperix firmware IP, as well as the values

applied to the SBO blocks. The PWM output is conveyed to the plant model.

https://imperix.com/doc/wp-content/uploads/2021/04/image-115-1024x521.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-115-1024x521.png
https://imperix.com/doc/implementation/hysteresis-current-control

The content of the simulated FPGA logic block is shown in the next figure. It contains

three instances of the DCC subsystem and a complementary PWM signal generation

system. Due to the time scale of a control simulation, it is impractical to simulate the

behavior of adc_done and the delay. To ignore them, they have been set to 1 and 0,

respectively.

The sampling frequency (CLOCK_0) has been set to 400 kHz but the postscaler has

been kept to 0 to simulate the “fast” FPGA logic. To emulate the “slow” logic

reference generation (40kHz), the angle block has been configured to have a sample

time of ten times the sampling frequency. Further details regarding this configuration

can be found in TN120.

The following graphs show the simulation results for a current reference of 4 A and a

hysteresis tolerance of ±0.3 A and ±0.1 A, which are very close to the experimental

measurements of TN120.

https://imperix.com/doc/wp-content/uploads/2021/04/image-116-1024x706.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-116-1024x706.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-117.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-117.png
https://imperix.com/doc/implementation/hysteresis-current-control
https://imperix.com/doc/implementation/hysteresis-current-control

Integration of the HDL design in the FPGA firmware

Once the implementation has been validated in simulation, the VHDL sources can be

generated and integrated into the sandbox environment, as shown in the next figure.

Step-by-step instructions, as well as general design recommendations regarding the

implementation of custom FPGA firmware, can be found in PN116.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2021/04/image-118-1024x349.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-118-1024x349.png
https://imperix.com/doc/help/editing-the-fpga-firmware-using-the-sandbox
https://imperix.com/doc/wp-content/uploads/2021/04/image-119-1024x820.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-119-1024x820.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

