FPGA-based hysteresis controller for three-phase
inverter using HDL Coder

TN121 | Posted on April 2,2021 | Updated on May 7, 2025

Benoit STEINMANN
Software Team Leader

imperix . in

Table of Contents

e Software resources

e FPGA logic implementation

e Validation of the FPGA-based hysteresis controller by simulation
o Testbench
o Control loop simulation

¢ Integration of the HDL design in the FPGA firmware

This technical note shows how the implementation of an FPGA-based hysteresis
controller can be conducted, starting from the modeling stage, following with
automated VHDL code generation with HDL Coder, and finishing with its validation in
simulation. As an application example, this note uses the hysteresis current control
already shown in TN120.

HDL Coder is a MATLAB tool that generates HDL code from Matlab or Simulink
models, which can then be integrated into an FPGA. This approach can greatly
accelerate rapid prototyping as the design is performed from a higher level of
abstraction. The second benefit is the possibility to simulate the FPGA logic in a
control loop, directly from within Simulink.

This example has been written before the release of the newest FPGA control
template, as such is does not implement the latest recommendations such as the
use of AXI4-Stream interfaces.

To find all FPGA-related notes, you can visit FPGA development homepage.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/implementation/hysteresis-current-control
https://imperix.com/doc/help/matlab-hdl-coder
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

Software resources

hysteresis_current_control_Simulink_HDL_coderDownload
hysteresis_current_control_Simulink_testbenchDownload

FPGA logic implementation

Below is the hysteresis current controller (also called direct current control [DCC])
logic implementation is taken from TN120.

err < -tol
15 16
meas_in D Q v err =
= HIGH H2L
— cE
-~ pwm=0 pwm=1
counter=0 counter++
.18 p—
ref_in £ D a D Q ,
— — counter = delay counter zdelay | pwm pwim_out
= B
.18 — 16 | Low
tol_in D Q o Q to pwm =1
CE — ce 16 delay counter =0
oz
5 =
) [
err = tol
) 1
data_valid_pulse
1 "
adc_done_pulse err_out
e
delay_in
clk_in —p

An equivalent logic can be transcribed in Simulink using HDL Coder-compatible
blocks, as shown in the next figure. The Data Type Conversion blocks force the input
signals to be interpreted as signed integers, the Enabled Subsystems infer the flip-
flop registers, and the Stateflow's State Transition Table block is used to easily
implement the state machine.

TRANSITIONS
STATES
F
' (HiGH Jerr<tal]
entry: pwm = wint16{0)
" entry: cnt_rst = wint16(1)
HaL =
\
HzL Jeounter >= delay
entry: pwm = Lint16(1)
D int16 entry: cnt_rst = uint16(0)
5
delay Low M
ufixd (Low Jerr > tol]
(4} entry: pwm = Lint16(1)
ntry: cnt_rst = wint18(1)
ade_done s “
i 3 L n . L LZH -
int16 intlé int16 int16 o
In1 Out1 124 lcounter >= delay
s’ (SI) eniry: pwm = uint16(0)
niry: cnt_rst = uint18(0)
Data Type Conversion5 Enabled A S
Subsystem HIGH -
.~ @/
; Subtract1
int16 intlé int16 n int16
@—P i in1 Outl I delay uint16 izl
— (SI) o pwm convert ——»(1)
» —
Data Type Conversiong Enabled counte - i pwm
= uint16 L
Subsystem w L ot _rst Data Type Conversion
% State Transition Table
. : ! n |
int16 intlé int16 int16
G pint out1f—— | ——{count rstf boolean |«
e (S]) uint16 boolean
ol
Data Type Conversion7 Enabled HDL Counter1 Data Type Conversion1

Subsystem2 » 2)

efr

https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_ctrl_loop_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_ctrl_loop_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_testbench_2015a.slx
https://imperix.com/doc/wp-content/uploads/2021/04/hdl_dcc_testbench_2015a.slx
https://imperix.com/doc/implementation/hysteresis-current-control
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-108.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/image-108.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-114.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-114.png

Validation of the FPGA-based hysteresis controller
by simulation

The validation of the FPGA-based hysteresis controller is done in two phases. First,
the design is placed in a testbench model and stimulated with various test signals.
The second phase is the integration of the design in the control model to simulate its
behavior in a closed control loop.

Testbench

The tests must be as comprehensive as possible to see if the design operates as
expected in all conditions. The following figure illustrates one of the validation steps,
where the state machine transitions are tested by applying a sinusoidal signal to
meas and a fixed value to the other inputs. The results are visually inspected using a
scope that shows that the PWM signal has the correct state and the transition
occurs when the difference between meas and ref is equal to tol.

double
% 1/15000

Gain ‘ double
»1/15000

Gain1

double int16
F int16 reas

Sine Wave Data Type Conversion

double . . int16
10000 intl6 ref

Constant2 Data Type Conversion1

double R . int16
| 2000 int16 tol

Constant1 Data Type Conversion2

double ufix1
convert P adc_done

Pulse Data Type Conversion3

Generator double . i1t
int16 =

Constant Data Type Conversion4

Ready Sample based T=1000.000

Control loop simulation

The second phase is the integration of this design within the control model already
used in TN120. The objective is to simulate its behavior in a closed control loop. The
simulated FPGA logic block takes as input the ADC values, scaled to match the
actual 16-bit ADC output provided by the imperix firmware IP, as well as the values
applied to the SBO blocks. The PWM output is conveyed to the plant model.

https://imperix.com/doc/wp-content/uploads/2021/04/image-115-1024x521.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-115-1024x521.png
https://imperix.com/doc/implementation/hysteresis-current-control

1o ADG blocks

Simulation [, s
double
P sim BBO single
cHo o |_meas_a |

3
b—bu Scope

®duubla(3 double sim BBO
single

Control_inputs

single (3) . outt wint16 (3) boolean (6)

double 3 3 (1D

sim BBO single H
™ Control_outputs

CcH2 lmeas ¢ Cenversion3 3 int16 (3) i
. ™

simulated » single (3]!
im BBO N in1 Out1
sim single FPGA logic 3
= Ydo_mees I *

W) ADC Conversiond Scape?

I_ref_peak |single
4

BBO

single (3) uint16 (3)
. in1 t1 2
Bin Oul . reg_00-0;

; =
| o sing Conversion
single .
ol |single uint16 BB
0.1 [In1 Outt P reg_03
Conversion1
single
BBO int16 (3 single (3) [single activate |single BBO
reg_00-02 [3 In1 Qut1 ngle L1 7 error_b 1 = SB
single PWM
Corverson?

The content of the simulated FPGA logic block is shown in the next figure. It contains
three instances of the DCC subsystem and a complementary PWM signal generation
system. Due to the time scale of a control simulation, it is impractical to simulate the
behavior of adc_done and the delay. To ignore them, they have been set to 1 and 0,
respectively.

uint16 (3)
(1) P mes
3
meas
. fix1 (3) boolean (6)
t16 (3 u
@um (3) gref pwm 45 In1 Out1 4’{5)
ref pwm
uint16 SB-PWM
D) P ol COMPL SIGNALS
tol GENERATION
double A d
| |—>a c_done |int16 (3)
Constant2 o @
double er
Constant1
3xDCC

The sampling frequency (CLOCK_0) has been set to 400 kHz but the postscaler has
been kept to 0 to simulate the “fast” FPGA logic. To emulate the “slow” logic
reference generation (40kHz), the angle block has been configured to have a sample
time of ten times the sampling frequency. Further details regarding this configuration
can be found in TN120.

The following graphs show the simulation results for a current reference of 4 A and a
hysteresis tolerance of +0.3 A and +0.1 A, which are very close to the experimental
measurements of TN120.

https://imperix.com/doc/wp-content/uploads/2021/04/image-116-1024x706.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-116-1024x706.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-117.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-117.png
https://imperix.com/doc/implementation/hysteresis-current-control
https://imperix.com/doc/implementation/hysteresis-current-control

Hysteresis tolerance = 0.3 [A] (simulation)

sf
4k M M M 1
S A
3t IJI'J “W N N M4
| Wi 7
2
z ..""', J ""'I ».-‘N’ M
R roW /
/ / \
E |V " \ r "u
, W
29 W V ! 1
| L VoY
ﬁ An \ W N
g8 || J_-l apd
\ \ J
W L
M| WY L‘\“‘.. v :
/ Wimw Tk
“r VW vV
sk
. . .
0 001 0015 00z 0.025 003
Time [s]

is tolerance = 0.1 [A] (simulation)

5 |_meas_a
I_meas_b
4 F wa"‘\ l:' ,J"‘"v-.“‘ . I_meas_c ’:
| " W M
3) J \R:L \ ,‘f ". ;',
:‘—_' , I;ﬂ _,-' \ -\ /f ';'\\‘,
5 ’ Y / /
E u\‘-” }f \ A / y
Sl /
Fal / \ \ ‘_,/
=) \ N ')/‘ /
2H { 1
3 \ \liw 4 ‘}‘-. !
a3k R 5 o \,
\ S
et p—
SL 1 L 1 1
0 0.005 001 0.015 0.02 0.025 003
Time [s]

Integration of the HDL design in the FPGA firmware

Once the implementation has been validated in simulation, the VHDL sources can be
generated and integrated into the sandbox environment, as shown in the next figure.
Step-by-step instructions, as well as general design recommendations regarding the
implementation of custom FPGA firmware, can be found in PN116.

mpso] O

oce_

e
RTL '
I

mead 150]
entis)

oo

L

gpif15:0] D>

private_in[66:0] D>

xIP_o

+ sl
» SBI_rag 00(15:0)
> SBI_reg 010

adc_dmne
o le
const_to_one 1150
1 o
aospon |.<__ ox ot e
o CC_v
bce_ — > SBI_rag 02150]
Wl + Aoc
b on_anatie mesy15.0] 4 ADC_pug 007150
15) — " [% « anc_eqomnsg
<4~ < ADC_reg Q2050
il + s80
10 4=« 550_req 0150
10(150] it -« 5B0_rag 011150
co_out
dakay(15.0
ade_dana
& « SBO_pug 02015
o Gta « SBO_pug 03150
fwm « 580_reg 041150
atc_dors_puse
e z0_me
L]
0CC_. e e
) siconeat_0
L— o anatio rf150] et
mead159] L 200 o] e 58 par{31]
req159| o[
16150 i —]
ety 15:0)
adc_ome
&
e)
from a0 0|
co_out 1=
V10
const_to_zen : oY
w3
| dap0] ||: S0
Comstant
const_to_zero_26_bas
| o) ||= 250
T
@159]
[privale_ingen.)

Back to FPGA development homepage

id_number

sar_w 150

|)

IX

DOR +|
FIXED_IO' +
CLOCK O +
CLOCK 1 +
CLOCK 2 4
CLOCK I 4

gpmi1s0)
prvals_ouf4d 0
(310
data_vald_pulw
o_in_boox
wadng
samgling puse

|—{> ooR
—L> FiXED_IO

D> gpol15:0]
private_out440]
pum[31:0]

https://imperix.com/doc/wp-content/uploads/2021/04/image-118-1024x349.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-118-1024x349.png
https://imperix.com/doc/help/editing-the-fpga-firmware-using-the-sandbox
https://imperix.com/doc/wp-content/uploads/2021/04/image-119-1024x820.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-119-1024x820.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

