
FPGA-based SPI communication IP for ADC

TN130 | Posted on April 2, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Related notes

Software resources

FPGA ADC implementation

FPGA ADC testbench

Deployment on the B-Board PRO FPGA

Using the imperix 3.3V USR pins

Experimental results

This technical note shows how an SPI communication link can be established between an FPGA and an

external Analog-to-Digital Converter (ADC). The development setup will consist of an imperix B-Board PRO

evaluation kit and an LTC2314 demonstration circuit. The LTC2314 ADC driver will be developed using VHDL

integrated into the user-programmable area (the sandbox) of the FPGA thanks to the FPGA customization

feature of the imperix controllers. Three of the 36 user-configurable 3.3V I/Os of the B-Board will be used for

the SPI communication with the ADC.

This note provides a VHDL implementation of the FPGA ADC driver. However, automated HDL code generation

tools such as MATLAB HDL Coder or Xilinx System Generator can be used to create FPGA peripherals as

shown on the custom FPGA PWM page.

To find all FPGA-related notes, you can visit FPGA development homepage.

Related notes

Information on how to set up the toolchain for the FPGA programming is available on the Vivado Design Suite

installation page.

Quick-start information on how to use the sandbox is provided on the getting started with FPGA page.

Software resources

The FPGA ADC driver resources can be downloaded by clicking on the button below. It contains the VHDL

driver LT2314_driver.vhd, its associated testbench LT2314_tb.vhd, as well as the C++ drivers implemented

using the C++ SDK.

Click to download TN130_LTC2314_ADC_FPGA_driver.zip

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/products/control/inverter-control-board/
https://imperix.com/software/fpga-programming/
https://imperix.com/software/fpga-programming/
https://imperix.com/doc/help/matlab-hdl-coder
https://imperix.com/doc/help/xilinx-system-generator
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/help/vivado-design-suite-installation
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/software/cpp-sdk/
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/TN130_LTC2314_ADC_FPGA_driver.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/04/TN130_LTC2314_ADC_FPGA_driver.zip

FPGA ADC implementation

This example implements a full-custom FPGA ADC SPI driver for the LTC2314-14 serial sampling ADC with the

following settings:

It uses the LTC2314 SCK continuous mode (see next figure)

The SCK frequency is configurable using a postscaler (postscaler_in)

The conversion is started upon the assertion of sampling_pulse

LTC2314-14 Serial Interface Timing Diagram in SCK Continuous Mode (source LTC2314 datasheet)

LTC2314 driver VHDL source

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity LT2314_driver is
port(
 -- CLOCKS:
 clk_250: in std_logic; -- 250 MHz clock
 sampling_pulse: in std_logic; -- sampling strobe

 -- CONFIGURATION:
 -- spi_sck = clk_250 / (postscaler_in*2)
 postscaler_in: in std_logic_vector(15 downto 0);

 -- OUTPUT DATA:
 data_out: out std_logic_vector(15 downto 0) := (others => '0');

 -- SPI SIGNALS:
 spi_sck: out std_logic; -- communication clock
 spi_cs_n: out std_logic; -- chip select strobe / sampling trigger
 spi_din: in std_logic -- serial data in
);
end LT2314_driver;

architecture impl of LT2314_driver is

 TYPE states is (ACQ,CONV);

 SIGNAL state : states := ACQ; -- FSM state register

 -- Signal used as SPI communication clock
 -- spi_sck = postscaled_clk = clk_250 / (postscaler_in*2)
 SIGNAL postscaled_clk : std_logic := '0';

 -- Indicates a rising edge on postscaled_clk
 SIGNAL postscaled_clk_rising_pulse : std_logic := '0';

 -- Asserted when sampling_pulse = '1'
 -- Cleared when postscaled_clk_rising_pulse = '1'
 SIGNAL pulse_detected : std_logic := '0';
begin

https://www.analog.com/en/products/ltc2314-14.html
https://imperix.com/doc/wp-content/uploads/2021/04/image-120-1024x351.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-120-1024x351.png

 spi_sck <= postscaled_clk;
 spi_cs_n <= '1' when state=ACQ else '0';

 -- Generate postscaled_clk and postscaled_clk_rising_pulse
 POSTSCALER: process(clk_250)
 variable postscaler_cnt: unsigned(15 downto 0):=(others=>'0');
 begin
 if rising_edge(clk_250) then
 postscaled_clk_rising_pulse <= '0';

 -- Toggle postscaled_clk
 -- Assert postscaled_clk_rising_pulse if rising edge
 if postscaler_cnt+1 >= unsigned(postscaler_in) then
 if postscaled_clk = '0' then
 postscaled_clk_rising_pulse <= '1';
 end if;
 postscaler_cnt := (others => '0');
 postscaled_clk <= not postscaled_clk;
 else
 postscaler_cnt := postscaler_cnt + 1;
 end if;
 end if;
 end process POSTSCALER;

 -- Generate pulse_detected
 SAMPLING: process(clk_250)
 begin
 if rising_edge(clk_250) then
 if sampling_pulse = '1' then
 pulse_detected <= '1';
 elsif postscaled_clk_rising_pulse = '1' then
 pulse_detected <= '0';
 end if;
 end if;
 end process SAMPLING;

 -- Finite State Machine
 -- Run at SPI clock speed (using postscaled_clk_rising_pulse=
 FSM : process(clk_250)
 variable bit_cnt : unsigned(4 downto 0) := (others=>'0'); -- bit counter
 begin
 if rising_edge(clk_250) and postscaled_clk_rising_pulse = '1' then
 case state is

 when ACQ =>
 bit_cnt := (others => '0');
 if pulse_detected = '1' then
 state <= CONV;
 end if;

 when CONV =>
 bit_cnt := bit_cnt + 1;
 if bit_cnt >= 16 then
 state <= ACQ;
 end if;

 when others => null;
 end case;
 end if;
 end process FSM;

 -- Sample spi_din on spi_sck rising edge during ACQUISITION phase
 SHIFT_REG: process (clk_250)
 variable data_reg: std_logic_vector(15 downto 0):=(others=>'0');
 begin
 if rising_edge(clk_250) then
 if state = CONV and postscaled_clk_rising_pulse = '1' then

 data_reg := data_reg(14 downto 0) & spi_din;
 elsif state = ACQ then
 data_out <= "0" & data_reg(15 downto 1); -- re-align data
 end if;
 end if;
 end process SHIFT_REG;
end impl;Code language: VHDL (vhdl)

FPGA ADC testbench

A VHDL testbench modeling the LTC2314 behavior has been written in order to validate the FPGA ADC driver

behavior.

LTC2314 testbench source

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity LT2314_tb is end;

architecture bench of LT2314_tb is

 -- number of blank bits provided by the ADC
 constant NBLANKBITS : positive := 1;

 -- SCK = CLK_250_MHZ / (POSTSCALER*2) = 62.5 MHz
 constant SCK_POSTSCALER : std_logic_vector := "0000000000000010";

 -- main clock period
 constant CLK_PERIOD : time := 4.0 ns; -- 250 MHz

 -- simulated data sample produced by the ADC
 signal rawdata : unsigned(13 downto 0) := (others=>'0');

 -- clock signals
 signal clk_250, sampling_pulse : std_logic := '0';

 -- SPI signals
 signal SPI_DIN, SPI_nCS, SPI_CLK : std_logic := '0';

begin

 primary_clock: clk_250 <= not clk_250 after CLK_PERIOD / 2;

 --
 -- DEVICE UNDER TEST
 --

 DUT: entity work.LT2314_driver
 port map(
 clk_250 => clk_250,
 sampling_pulse => sampling_pulse,
 postscaler_in => SCK_POSTSCALER,
 spi_sck => SPI_CLK,
 spi_cs_n => SPI_nCS,
 spi_din => SPI_DIN,
 data_out => open);

 --
 -- ANALOG-TO-DIGITAL CONVERTER MODEL
 --

 DATA_SAMPLE: process
 begin

 wait for CLK_PERIOD*100;

 rawdata <= to_unsigned(12345,14);
 sampling_pulse <= '1';
 wait for CLK_PERIOD;
 sampling_pulse <= '0';

 wait for CLK_PERIOD*100;

 rawdata <= to_unsigned(5782,14);
 sampling_pulse <= '1';
 wait for CLK_PERIOD;
 sampling_pulse <= '0';

 wait for CLK_PERIOD*100;

 rawdata <= to_unsigned(777,14);
 sampling_pulse <= '1';
 wait for CLK_PERIOD;
 sampling_pulse <= '0';

 end process DATA_SAMPLE;

 SPI_TARGET: process(SPI_nCS,SPI_CLK,SPI_DIN)
 variable counter : integer := 0;
 begin
 if SPI_nCS='1' then
 SPI_DIN <= 'Z';
 counter := 13 + NBLANKBITS;
 elsif SPI_nCS='0' and falling_edge(SPI_CLK) then
 if (counter > 13 or counter < 0) then
 SPI_DIN <= '0';
 else
 SPI_DIN <= std_logic(rawdata(counter));
 end if;
 counter := counter - 1;
 end if;
 end process SPI_TARGET;

end architecture bench;Code language: VHDL (vhdl)

Deployment on the B-Board PRO FPGA

To learn how to add a VHDL module into B-Board FPGA firmware using Xilinx Vivado, please read the getting

started with FPGA page. The ADC SPI driver has interfaced as follow:

spi_sck is connected to the physical pin USR[0]
spi_cs_n is connected to the physical pin USR[1]
spi_din is connected to the physical pin USR[2]
postscaler_in is connected to SBO_reg_00 (configuration register)

data_out is connected to SBI_reg_00 (real-time register)

https://imperix.com/doc/wp-content/uploads/2021/04/image-121.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-121.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development

From SDK version 2024.2, ports SBI and SBO on the imperix IP are replaced by the SBIO_BUS. The sbio_register

block must be used to access the SBI and SBO registers. More information about SBIO_BUS can be found on

the Getting Started with FPGA Control Development page.

Furthermore, the signals spi_sck, spi_cs_n, spi_din, data_out and sampling_pulse are also connected to

an Integrated Logic Analyzer (ILA), allowing them to be observed during run-time.

Interfacing of the ADC driver in the B-Board FPGA

Using the imperix 3.3V USR pins

The SPI signals (SCK, nCS, and MISO) of the ADC driver are connected to 3 of the 36 user-configurable 3.3V I/Os

of the B-Board (usr_0, usr_1, and usr_2). The physical pin constraint file sandbox_pins.xdc file must be

edited by the user to match the external port names.

From version 3.7, a USR interface is present in the imperix firmware IP. This port must be disconnected to use

USR pins for other applications. Imperix only uses USR for communication with the motor interface.

Experimental results

The following hardware was used:

B-Board evaluation kit

LTC2314 demonstration circuit

Xilinx JTAG Platform Cable USB II

https://imperix.com/doc/help/getting-started-with-fpga-control-development#SBIO_BUS
https://imperix.com/doc/wp-content/uploads/2021/04/image-122-1024x578.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-122-1024x578.png
https://imperix.com/products/electric-motor-drive-bundle/
https://imperix.com/doc/wp-content/uploads/2022/04/image-38.png
https://imperix.com/doc/wp-content/uploads/2022/04/image-38.png
https://imperix.com/products/control/inverter-control-board/

DSLogic Plus logic analyzer

The following C++ code has been used to test the LT2314 driver.

define ADC_GAIN (4.096/8192.0)

int adc_raw;
float Vmeas;

tUserSafe UserInit(void)
{
 Clock_SetFrequency(CLOCK_0, 20e3);
 ConfigureMainInterrupt(UserInterrupt, CLOCK_0, 0.5);

 Sbi_ConfigureAsRealTime(0); // SBI_reg_00 contains the ADC value (LT2314_driver data_out)
 Sbo_WriteDirectly(0, 2); // SBO_reg_00 is the clk postscaler (LT2314_driver postscaler_in)
 // postscaler = 2 -> SCK = 62.5 MHz
 return SAFE;
}

tUserSafe UserInterrupt(void)
{
 adc_raw = Sbi_Read(0); // read SBI_reg_00
 Vmeas = adc_raw * ADC_GAIN; // convert to Volts

 return SAFE;
}Code language: C++ (cpp)

The external SPI signals can be observed using a physical logic analyzer such as the DSLogic Plus:

Secondly, the Xilinx Integrated Logic Analyzer (ILA) allows to observe internal signals too:

https://imperix.com/doc/wp-content/uploads/2021/04/image-10-1024x768.jpeg
https://imperix.com/doc/wp-content/uploads/2021/04/image-10-1024x768.jpeg
https://imperix.com/doc/wp-content/uploads/2021/04/image-123.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-123.png

Finally, the end result can be plotted in the Cockpit monitoring software, attesting that the SPI module works

correctly.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2021/04/image-124.png
https://imperix.com/doc/wp-content/uploads/2021/04/image-124.png
https://imperix.com/doc/help/cockpit-user-guide
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

