High-Level Synthesis for FPGA developments

TN142 | Posted on June 15,2021 | Updated on May 7, 2025

Benoit STEINMANN
Software Team Leader

imperix . in

Table of Contents

¢ Integrating HLS designs in the FPGA
o Description of the design
o CPU-side implementation using Simulink
o FPGA-side implementation using_Vivado

High-level synthesis (HLS) tools greatly facilitate the implementation of complex
power electronics controller algorithms in FPGA. Indeed HLS tools allow the user to
work at a higher level of abstraction. For instance, the user can use Xilinx Vitis HLS
to develop FPGA modules using C/C++ or the Model Composer plug-in for Simulink
to use graphical programming instead.

This page shows how IPs generated using high-level synthesis tools can be
integrated into the FPGA of an imperix power controller. To this end, the example of a
Pl-based current controller for a buck converter is used to illustrate all the required
steps.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

B
—-‘u’m
‘u’ﬂut

CPU

Iref
Kp —
Ki Jax

-k

’_.
@

Latency

frequency dead-time

SB
|

FPGA

ADC =

ix firmware IP | SBO SBI
! 1
ix axis interface
[1] 444
CPUZFPGA FPGAZCPU
44 (N
l..l-.
—& -+ Current control
-

%g |
-0

Power converter control FPGA

To find all FPGA-related notes, you can visit FPGA development homepage.

Integrating HLS designs in the FPGA

Description of the design

The image below shows the example that will be implemented on this page. It is a PI-
based current controller for a buck converter, based on the algorithm presented on
the PI controller implementation for current control technical note. This example

uses the following resources

¢ the FPGA control starter template from the getting started with FPGA guide
e the PWM modulator IP from the FPGA PWM modulator example
¢ the high-level synthesis Pl-based current control IP from either

o the C++ implementation presented in the Xilinx Vitis HLS guide

o or the Simulink implemention presented in the Model Composer guide

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Block_diagram_FPGA_CPU_overall.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Block_diagram_FPGA_CPU_overall.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

FPGA

cPU

Kp

| |, ref

PWM
modulator

ix axis HLS generated IP core
interface

The axis interface provides the inputs of the current control algorithm in form of
AXI4-Stream ports. The following ports are used:

e CPU2FPGA_0@ for the current reference I1_ref (32-bit single-precision)

e CPU2FPGA_01 forthe parameter Kp (32-bit single-precision)

e CPU2FPGA_02 forthe parameter Ki (32-bit single-precision)

e ADC_o00 forthe measured current I1 (16-bit signed integer)

e ADC_01 forthe measured output voltage of the converter Vout (16-bit signed
integer)

e ADC_02 for the measured input voltage of the converter vint (16-bit signed
integer)

e Ts for the sampling period in nanoseconds (32-bit unsigned integer)

Aside from AXI4-Stream data, the current control IP also uses the ports:

e CLOCK_period for the PWM period in ticks (16-bit unsigned)
e nReset_ctrl to reset the Pl when the controller is not in OPERATING state

Using these signals, the HLS IP computes a 16-bit unsigned duty cycle ticks that
is forwarded to the PWM IP. And finally, the PWM IP uses the sb_pwm driver to output
the PWM signals to optical fibers of the B-Box RCP controller. The PWM IP and the
SB-PWM driver are further documented on the FPGA PWM modulator page.

The ADC values provided by the starter template are the raw result from the ADC
chips. They are multiplied by a gaininside the HLS IP to obtain physical values. An
example of gain computation is available on the ADC block help page.

CPU-side implementation using Simulink

The CPU-side model is quite simple, as the control algorithm runs entirely in the
FPGA. The CPU code provides the current reference and Kp/Ki parameters, operates
the Pl reset signal, and configures the PWM outputs.

https://imperix.com/doc/wp-content/uploads/2021/08/Block_diagram_HLS_IPs-1.png
https://imperix.com/doc/wp-content/uploads/2021/08/Block_diagram_HLS_IPs-1.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/software/analog-data-acquisition

Made: to PWM blocks — BBO

Code gen. [ADC blocks Sk

=]

Ctrl+L on this block to show library

I ref ¥ BBO | sim BBO
[>} reg_00-01 HO ol
single2sbo ¥2

CPUZFPGA_DOD

I

Kp ¥l BBO | sim BBO .
e T A , reg_02-03 ' CH1 [Jvin
single2sbo ¥ -
CPU2FPGA_D1
: BBO » sim BBO
Ki il) sim
165 Y 4) reg_04-05 cHz»L_lvout
singlezsbo ¥ T

CPUZFPGA_02

BBO BBO 1
Core state u
e— P reg_63 reg_00-01 ‘ ¥ —bEProcessingDelay

SBI U2 shizuintaz
nReset_ctrl FPGA2CPU_00

The single2sbo MATLAB Function blocks are used to map the current reference
ll_ref and the Kp, Ki parameter to the CPU2FPGA ports.

This nReset_ctrl signal is used to keep the PI integrator at reset when the controller
is not in OPERATING state. As documented in Getting_started with FPGA, this reset
signal is controlled using SBO_63. To obtain the desired behavior, we'll simply
connect the reset output of a Core state block to SBO_63.

And finally, the SB-PWM block is used to activate the output PWM channel 0 (CHO)
(lane #0 and lane #1). The output is configured as Dual (PWM_H + PWM_L) with a
deadtime of 1 ps. This configuration expects a PWM signal coming to sh_pwm|[0]
input of the imperix firmware IP and will automatically generate the complementary
signals with the configured deadtime.

The ADC blocks are only used to retrieve the analog input signals at the CPU level for
real-time monitoring. They do not affect the closed-loop control behavior.

FPGA-side implementation using Vivado

The TN142_vivado_design.pdf file below shows the full Vivado FPGA design. Here
are the step-by-step instructions to reproduce it.

https://imperix.com/doc/wp-content/uploads/2021/08/image-35.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-35.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/software/core-state
https://imperix.com/doc/software/sandbox-pwm

1. Create an FPGA control implementation starter template by following the
Getting_started with FPGA control implementation.

ix_axis_interface_0 IXIP_O
+ S_AXIS_FPGA2CPU_00 SBI + -—III’Jr] DDR +
+ S_AXIS_FPGA2CPU_O1 ADC + [t—et{|| + ADC FIXED_IO +
+ S_AXIS_FPGA2CPU_02 SBO + [lt—|| + sBO CLOCK_1 +
+ S_AXIS_FPGA2CPU_03 M_AXIS_ADC_00 + sb_pwmi31:0] CLOCK_O +
+ S_AXIS_FPGA2CPU_D4 M_AXIS_ADC_01 + cLOCK_2 +
+ S_AXIS_FPGA2CPU_05 M_AXIS_ADEC_02 + CLOCK 3 +
+ S_AXIS_FPGA2CPU_06 M_AXIS_ADC_03 + gpol15:0]
+ S_AXIS_FPGA2CPU_O7 M_AXIS_ADC_04 + private_out[44:0]
+ S_AXIS_FPGA2CPU_08 M_AXIS_ADE_05 + pwm[31:0]
+ S_AXIS_FPGA2CPU_09 M_AXIS_ADC_08 + is_in_bbox
+ S_AXIS_FPGA2CPU_10 M_AXIS_ADC_07 + sampiing_puse
+ S_AXIS_FPGA2CPU_11 M_AXIS_ADC_08 +
+ S_AXIS_FPGA2CPU_12 M_AXIS_ADC_09 +
+ S_AXIS_FPGA2CPU_13 M_AXIS_ADC_10 +
+ S_AXIS_FPGA2CPU_14 M_AXIS_ADC_11 +
+ S_AXIS_FPGA2CPU_15 M_AXIS_ADC_12 +
M_AXIS_ADE_13 +
M_AXIS_ADC_14 +
M_AXIS_ADE_15 +
M_AXIS_CPU2FPGA_00 +
M_AXIS_CPU2FPGA_01 +
RTL M_AXIS_CPU2FPGA 02 +
M_AXIS_CPU2FPGA_03 +
M_AXIS_CPUZFPGA_04 + []

M_AX|S_CPUZFPGA_05 +

M_AXIS_CPUZFPGA_06 +
M_AXIS_CPU2FPGA_O7 +
M_AXIS_CPU2FPGA_08 +
M_AXIS_CPU2FPGA_09 +
M_AXIS_CPU2FPGA_10 +
M_AXIS_CPU2FPGA_11 +
M_AXIS_CPU2FPGA_12 +
M_AXIS_CPU2FPGA_13 +
M_AXIS_CPUZFPGA_14 +
M_AXIS_CPUZFPGA_15 +

M_AXIS_Ts +

ade_done_pulse_in
ck

data_valid_pulse_in

data_reading_in

A A A 44

sync_pulse_in
nReset _ctrl =
nReset_sync =

ix_input_interface_v1_0

fifi5:0] >

opil15:0] >
private_in[66:0] [

2. Add the PWM IP (from the custom PWM in FPGA page) and current control IP
(from the Xilinx Vitis HLS guide or the Model Composer guide) into your Vivado
project. In the screenshots of this example, we'll use the IPs generated using

xlconstant_0
dout[15:0]

Constant

ade_done_pulse
clk_250_mhz
data_valid_pulse
reading
sync_pulse

fI[15:0]
gpil15:0]
private_in[66.0]

user_fw_id[15:0]

—> DOR
——[> FIXED_IO

—12> gpe[15:0]
p——{"> private_out{44:0]
—1 pum(310]

IMPERIX_FW

System Generator and Vitis HLS, respectively.

To read the duty_cycle ticks only when duty cycle ticks ap vld is ‘T,
the RAM-based Shift Register IP is used. With the configuration shown in the
screenshot below, this block adds one register stage that acts as a buffer. It

keeps the last computed duty cycle until a new value has been computed.
When a new value is available, it replaces the old one.

https://imperix.com/doc/wp-content/uploads/2021/08/image-106-1024x361.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-106-1024x361.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/template_screenshot.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/template_screenshot.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

XMC_CurrentControl_0

sysgen_pwm_0
=+ l_ref_V
=4 Kp_V = clock_clk_en
— = Ki_V = clock_period[15:0]
=+ _raw_V c_shift_ram_0 = clock_prescaler[15:0]
=4 Vin_raw_V | """ | duty_cycle_ticks_ap_vid = clock_timer[15:0] n o_pwm —
+ Vout_raw_V duty_cycle_ticks[15:0] D[15:0] = i_updaterate
+ TsV CLK Q[15:0] i_nextdutycycle[15:0]
ap_clk CE = clk
ap_rst_n
CLOCK_period[15:0] RAM-based Shift Register Sysgen_pwm

Xme_cumentcontrol (Pre-Production)

D[15:0]
CLK
CE

Q[15:0]

Configuration Initialization Output

Shift Register Type
®) Fixed Length () Variable Length Lossless

Optimizati

When a variable-length lossless RAM-based Shift Register is selected, this parameter specifies
ifthe core is to be optimized for area or speed.

Optimization Resources
Clocking Options
{ [+ Clock Enable(CE)

Dimensions
[Jwian 16 g

Latency Information

256] Depth 1 [1-1088]

Latency : 0

Latency represents delay in addition to the Depth of the RAM-based shift register (SR).
Additional latency is incurred with variable length SRswhen Register Last Bit or Speed
optimization is selected.

3. Add a Constant IP to set all the 31 unused sb_pwm outputs to ‘0. Set its Const
Widthto 31 and its Const Valto 0.

4. Add a Concat IP. It will serve to concat the pwm output of the PWM IP with the
zeros of the Constant IP.

sysgen_pwm_0

>

sysgen_pwm

1
o_pwm

Zeros

dout[30:0]

Constant

—|||+ sBI
. fit[15:0] |
pw gpi[15:0]
private_in[66:0]
Inof0-0} dout{31:0] b_pwm[31:0]
y s 3
In1[30:0])
—e= yser_fw_id[15:0]
Concat

IMPERIX_FW

5. Add a Constant IP to set to set the update rate. ‘0’ = single rate, "1’ = double

rate.

https://imperix.com/doc/wp-content/uploads/2021/08/image-65-1024x369.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-65-1024x369.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-25.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-25.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-69.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-69.png

sysgen_pwm_0

double rate

O = clock_clk_en

[dout][0:0]]—— == clock period[15:0]

.) = clock_prescaler[15:0]

Constant = clock_timer[15:0] x
i_updaterate
i_nextdutycycle[15:0]
- clk

sysgen_pwm

6. Connect the clock signals as below:

- 1 I'III_II:A'l'l_I'
=+ Vout raw_V | d
=+ Ts_V
ap_clk
IXIP_O ap_rst.n
CLOCK_period[15:0
DDR 4 ” . p [15:0]
FIXED_IO + l Xmec_currentcontrol (Pre-
ADC +||j=
SBO + | sysgen_pwm_0
CLOCK 1 +||
CLOCK 0 —||| — clock_clk_en

CLOCK_0_period[15:0] & = clock_period[15:0]
CLOCK_0_prescaler[15:0] p =

|
CLOCK_0_timer15:0] b I

= clock_prescaler[15:0]
= clock_timer[15:0]

| [
| L1
e CLOCK 0 clk en b L i_updaterate
cLock 2 +||| i nextdutycycle[15:0]
Ix CLOCK_3 +||| - clk
adc_done_pulse
clk_250_mhz = sysgen_pwm

7. Connect the AXI4-Streams

o M_AXIS_CPU2FPGA_00 to Il _ref V

o M_AXIS_CPU2FPGA_01 toKp_V
M_AXIS_CPU2FPGA_02 toKi_V
M_AXIS_ADC_00 to Il _raw_v
M_AXIS_ADC_O1 to voltage Vout_raw_V
M_AXIS_ADC_@2 toVint_raw_V
M_AXIS Ts toTs_V

o

O O O O

https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-68.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-68.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-71.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-71.png

ix_axis_interface_0

sBl =+ |||
M_AXIS_ADC_00 =+ [
M_AXIS_ADC_01 =+ [&
M_AXIS_ADC_02 =+ [
M_AXIS_ADC_03 =+ [=
M_AXIS_ADC_04 =+ [
M_AXIS_ADC_05 =+ [
M_AXIS_ADC_06 =+ [
M_AXIS_ADC_07 =+ [
M_AXIS_ADC_08 =+ [
M_AXIS_ADC_09 = [
M_AXIS_ADC_10 =+ [
M_AXIS_ADC_11 =+ [
M_AXIS_ADC_12 =+ [
M_AXIS_ADC_13 =+ [
M_AXIS_ADC_14 =+ [=

XMC_CurrentControl_0

=

M_AXIS_ADC_15 +
M_AXIS_CPU2FPGA 00 + [4 ref v
M_AXIS_CPU2FPGA 01 [4 Kp_v
M_AXIS_CPU2FPGA 02 + [24 KV
M_AXIS CPU2FPGA 03 + [S+ lraw v
M_AXIS CPU2FPGA 04 o+ E 24 Vinawy |
M_AXIS_CPU2FPGA 05 o [=4 Vout_raw_V
M_AXIS_CPU2FPGA 06 + [S TV
M_AXIS_CPU2FPGA 07 + [= ap_clk
M_AXIS_CPU2FPGA 08 + [9 ap_rsin
M_AXIS_CPU2FPGA 09 + [CLOCK_period[15:0]
M_AXIS_CPU2FPGA_10 4 [

L.
Xmc_currentcontrol

M_AXIS CPU2FPGA 11 + =
M_AXIS_CPU2FPGA_12 4 =
M_AXIS CPU2FPGA 13 + =
M_AXIS CPU2FPGA 14 = =
M_AXIS CPU2FPGA 15 + =

M_AXIS Ts = Femmd

nReset_ctrl

nReset_sync

ix_axis_interface_v1_0

8. The provided Delay Counter VHDL module (delay_counter.vhd) measures the
elapsed time between two signals and outputs a time in nanoseconds,
encoded as a uint32.

In this design, the delay counter modules are used purely for debugging
purposes. As shown in the image below, one is used to measure the FPGA
processing delay, which is the delay between the adc_done_pulse and the
duty cycle ticks_ap_ vld. Another module is used to measure the FPGA
cycle delay by measuring the delay between the sampling pulse and the
duty cycle_ticks_ap_vld. More information on what these delays represent
are available on the discrete control delay product node.

https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-77.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-77.png
https://imperix.com/doc/help/discrete-control-delay

IXIP_0

DOR + ||}
FIXED_IO + ||}

ADC +

SBO +

CLOCK_1 +

CLOCK 0 =
CLOCK_0_peried[15:0] »

CLOCK_0_prescaler{15:0] »
CLOCK_0_timer15.0] »
CLOCK_0_clk_en »
cLock 2 +|||

cLocks +|||

Processing_Delay

= star_in

XMC_CurrentControl_D

+ I_ref V

+ Kp_V

adc_done_pulse
clk_250_mhz =
data_valid_pulse p=—

+ KV
— - I_raw_V

duty_cyde_ticks_ap_vid

duty_cyde_ticks(15:0]

+ Vin_raw_V by
+ Vout_raw_V ﬂ

gpo[15:0]
is_in_bbox =

private_out[440]

+ Ts Vv
= ap_ck
4 ap_rst n

pwm[31.0]
reading

sampling_pulse

sync_pulse
-
IMPERIX_FW

CLOCK _period[15-0)

Xmc_currentcontrol (Pre-Production)

- end_in

= dk_250_mhz

RTL M_AXIS_DELAY = fFem

delay_counter_v1_0

Cycle_Delay
start_in
= end_in RTL M_AXIS_DELAY o e
= dk_250_mhz

delay_counter_v1_0

c_shift_ram_0

9. Connect the nReset_ctrl signalto ap_rst_n.

M_AXIS_CPU2FPGA_07 4+
M_AXIS_CPUZFPGA_08 4+
M_AXIS_CPU2FPGA 09 +
M_AXIS_CPU2FPGA_10 +
M_AXIS_CPU2FPGA_11 4
M_AXIS_CPU2FPGA_12 =
M_AXIS_CPU2FPGA_13 =+
M_AXIS_CPU2FPGA_14 ==
M_AXIS_CPUZFPGA_15 =+
M_AXIS_Ts 4

nReset_ctrl

nReset_sync

ix_axis_interface_v1_0

Df15:0]
- CLK
CE

Q[15:0] p—

RANF-based Shift Register

+ l_ref V

+ Kp vV

+ KV
<+ I_raw_V

<+ Vin_raw_V

4 Vout_raw_V

+ Ts V
ap_clk

L I ATR AR ATR AR TR AR

ap_rst_n
CLOCK_period[15:0]

| XMC_CurrentControl_0

Vitis™ HLS

duty_cycle_ticks_ap_vid =—
duty_cycle_ticks[15:0] =

-

10. And finally connect the clk signals to c1k_250_mhz.
11. Click Generate bitstream. It will launch the synthesis, implementation, and

bitstream generation

Xmc_currentcontrol (Pre-Production)

12. Once the bitstream generation is completed, click on File — Export — Export
Bitstream File... to save the bitstream somewhere on your computer.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2021/08/image-78-1024x480.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-78-1024x480.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-79.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-79.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

