
High-Level Synthesis for FPGA developments

TN142 | Posted on June 15, 2021 | Updated on May 7, 2025

Benoît STEINMANN

Software Team Leader

•

Table of Contents

Integrating HLS designs in the FPGA

Description of the design

CPU-side implementation using Simulink

FPGA-side implementation using Vivado

High-level synthesis (HLS) tools greatly facilitate the implementation of complex

power electronics controller algorithms in FPGA. Indeed HLS tools allow the user to

work at a higher level of abstraction. For instance, the user can use Xilinx Vitis HLS

to develop FPGA modules using C/C++ or the Model Composer plug-in for Simulink

to use graphical programming instead.

This page shows how IPs generated using high-level synthesis tools can be

integrated into the FPGA of an imperix power controller. To this end, the example of a

PI-based current controller for a buck converter is used to illustrate all the required

steps.

https://www.linkedin.com/in/benoit-steinmann/
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

Power converter control FPGA

To find all FPGA-related notes, you can visit FPGA development homepage.

Integrating HLS designs in the FPGA

Description of the design

The image below shows the example that will be implemented on this page. It is a PI-

based current controller for a buck converter, based on the algorithm presented on

the PI controller implementation for current control technical note. This example

uses the following resources

the FPGA control starter template from the getting started with FPGA guide

the PWM modulator IP from the FPGA PWM modulator example

the high-level synthesis PI-based current control IP from either

the C++ implementation presented in the Xilinx Vitis HLS guide

or the Simulink implemention presented in the Model Composer guide

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Block_diagram_FPGA_CPU_overall.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Block_diagram_FPGA_CPU_overall.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/implementation/basic-pi-control
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

The axis interface provides the inputs of the current control algorithm in form of

AXI4-Stream ports. The following ports are used:

CPU2FPGA_00 for the current reference Il_ref (32-bit single-precision)

CPU2FPGA_01 for the parameter Kp (32-bit single-precision)

CPU2FPGA_02 for the parameter Ki (32-bit single-precision)

ADC_00 for the measured current Il (16-bit signed integer)

ADC_01 for the measured output voltage of the converter Vout (16-bit signed

integer)

ADC_02 for the measured input voltage of the converter Vint (16-bit signed

integer)

Ts for the sampling period in nanoseconds (32-bit unsigned integer)

Aside from AXI4-Stream data, the current control IP also uses the ports:

CLOCK_period for the PWM period in ticks (16-bit unsigned)

nReset_ctrl to reset the PI when the controller is not in OPERATING state

Using these signals, the HLS IP computes a 16-bit unsigned duty_cycle_ticks that

is forwarded to the PWM IP. And finally, the PWM IP uses the sb_pwm driver to output

the PWM signals to optical fibers of the B-Box RCP controller. The PWM IP and the

SB-PWM driver are further documented on the FPGA PWM modulator page.

The ADC values provided by the starter template are the raw result from the ADC

chips. They are multiplied by a gain inside the HLS IP to obtain physical values. An

example of gain computation is available on the ADC block help page.

CPU-side implementation using Simulink

The CPU-side model is quite simple, as the control algorithm runs entirely in the

FPGA. The CPU code provides the current reference and Kp/Ki parameters, operates

the PI reset signal, and configures the PWM outputs.

https://imperix.com/doc/wp-content/uploads/2021/08/Block_diagram_HLS_IPs-1.png
https://imperix.com/doc/wp-content/uploads/2021/08/Block_diagram_HLS_IPs-1.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/software/analog-data-acquisition

The single2sbo MATLAB Function blocks are used to map the current reference

Il_ref and the Kp, Ki parameter to the CPU2FPGA ports.

This nReset_ctrl signal is used to keep the PI integrator at reset when the controller

is not in OPERATING state. As documented in Getting started with FPGA, this reset

signal is controlled using SBO_63. To obtain the desired behavior, we’ll simply

connect the reset output of a Core state block to SBO_63.

And finally, the SB-PWM block is used to activate the output PWM channel 0 (CH0)

(lane #0 and lane #1). The output is configured as Dual (PWM_H + PWM_L) with a

deadtime of 1 µs. This configuration expects a PWM signal coming to sb_pwm[0]

input of the imperix firmware IP and will automatically generate the complementary

signals with the configured deadtime.

The ADC blocks are only used to retrieve the analog input signals at the CPU level for

real-time monitoring. They do not affect the closed-loop control behavior.

FPGA-side implementation using Vivado

The TN142_vivado_design.pdf file below shows the full Vivado FPGA design. Here

are the step-by-step instructions to reproduce it.

https://imperix.com/doc/wp-content/uploads/2021/08/image-35.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-35.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/software/core-state
https://imperix.com/doc/software/sandbox-pwm

1. Create an FPGA control implementation starter template by following the

Getting started with FPGA control implementation.

2. Add the PWM IP (from the custom PWM in FPGA page) and current control IP

(from the Xilinx Vitis HLS guide or the Model Composer guide) into your Vivado

project. In the screenshots of this example, we’ll use the IPs generated using

System Generator and Vitis HLS, respectively.

To read the duty_cycle_ticks only when duty_cycle_ticks_ap_vld is ‘1’,

the RAM-based Shift Register IP is used. With the configuration shown in the

screenshot below, this block adds one register stage that acts as a buffer. It

keeps the last computed duty cycle until a new value has been computed.

When a new value is available, it replaces the old one.

https://imperix.com/doc/wp-content/uploads/2021/08/image-106-1024x361.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-106-1024x361.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/template_screenshot.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/template_screenshot.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer

3. Add a Constant IP to set all the 31 unused sb_pwm outputs to ‘0’. Set its Const

Width to 31 and its Const Val to 0.

4. Add a Concat IP. It will serve to concat the pwm output of the PWM IP with the

zeros of the Constant IP.

5. Add a Constant IP to set to set the update rate. ‘0’ = single rate, ‘1’ = double

rate.

https://imperix.com/doc/wp-content/uploads/2021/08/image-65-1024x369.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-65-1024x369.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-25.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-25.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-69.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-69.png

6. Connect the clock signals as below:

7. Connect the AXI4-Streams

M_AXIS_CPU2FPGA_00 to Il_ref_V
M_AXIS_CPU2FPGA_01 to Kp_V
M_AXIS_CPU2FPGA_02 to Ki_V
M_AXIS_ADC_00 to Il_raw_v
M_AXIS_ADC_01 to voltage Vout_raw_V
M_AXIS_ADC_02 to Vint_raw_V
M_AXIS_Ts to Ts_V

https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-68.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-68.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-71.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-71.png

8. The provided Delay Counter VHDL module (delay_counter.vhd) measures the

elapsed time between two signals and outputs a time in nanoseconds,

encoded as a uint32.

In this design, the delay counter modules are used purely for debugging

purposes. As shown in the image below, one is used to measure the FPGA

processing delay, which is the delay between the adc_done_pulse and the

duty_cycle_ticks_ap_vld. Another module is used to measure the FPGA

cycle delay by measuring the delay between the sampling_pulse and the

duty_cycle_ticks_ap_vld. More information on what these delays represent

are available on the discrete control delay product node.

https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-77.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-77.png
https://imperix.com/doc/help/discrete-control-delay

9. Connect the nReset_ctrl signal to ap_rst_n.

10. And finally connect the clk signals to clk_250_mhz.

11. Click Generate bitstream. It will launch the synthesis, implementation, and

bitstream generation

12. Once the bitstream generation is completed, click on File → Export → Export

Bitstream File… to save the bitstream somewhere on your computer.

Back to FPGA development homepage

https://imperix.com/doc/wp-content/uploads/2021/08/image-78-1024x480.png
https://imperix.com/doc/wp-content/uploads/2021/08/image-78-1024x480.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-79.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/image-79.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

