
DQ current control using FPGA-based PI controllers

TN144 | Posted on July 14, 2021 | Updated on May 7, 2025

Shu WANG

Development Engineer

•

Table of Contents

Overview of the dq current control module

FPGA-based dq current control using Model Composer

Testbench of the Model Composer implementation

FPGA-based dq current control using Xilinx Vitis HLS

Testbench of the Vitis HLS implementation

Testbench results

Further readings

Control algorithms for power electronics converters often rely on PI controllers executed on the CPU of the controller. That’s the

technique used in most of the application notes on this knowledge. However, in some situations, it could be desired to run the control

loop on an FPGA (e.g. to offload the CPU, or achieve much faster control rates). In that case, it is required to develop an FPGA-based

PI controller.

The implementation of an FPGA-based PI controller is given as an example in the introductory notes to Vitis HLS and Model

Composer. These are the two recommended approaches to develop FPGA-based control routines. In most realizations, however, the

control of three-phase AC variables requires two PI controllers running in a synchronous reference frame (dq), as introduced in the

note about CPU-based vector current control.

This page gives an example of an FPGA-based dq PI controller for current control of a grid-tied three-phase inverter using both Vitis

HLS and Model Composer approaches. Testbenches are also presented and help to validate that the implemented code or model

behaves as expected, before even executing it on a real-time controller.

For traditional CPU-based dq current control, please refer to vector current control.

To find all FPGA-related notes, you can visit FPGA development homepage.

Overview of the dq current control module

The implemented algorithm is a traditional vector (dq) current control, including a PI controller on each axis and a decoupling network.

The measured grid voltages are feedforwarded right after the current controllers, giving voltage quantities that the converter

should generate to induce the desired current. The zero-sequence voltage is here set to zero but can be used for instance for third-

harmonic injection, as done in the TN146.

Traditional dq current control algorithm

The following sections detail how to pack that algorithm into the FPGA IP shown below, using both High-Level Synthesis tools Vitis

HLS and Model Composer. That IP uses AXI4-Stream inputs and outputs to be compatible with other IPs developed on other pages, as

well as with Xilinx IP cores for Vivado. In particular, this IP is meant to be connected to the grid synchronization IP developed in FPGA-

based grid synchronization.

Eg,dq0

https://www.linkedin.com/in/shu-wang-6581221b9/
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/implementation/vector-current-control
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/implementation/vector-current-control
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/implementation/vector-current-control
https://imperix.com/doc/implementation/svpwm-vs-spwm-modulation-techniques
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/dq_current_control_v2_100pc.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/dq_current_control_v2_100pc.png
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/implementation/axi4-stream-ip-from-xilinx
https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/fpga-implementation-pll

Generated IP implementing the dq current control

Further details on integrating a Vivado IP in the FPGA are presented in High-Level Synthesis integration into the FPGA. A complete

converter control algorithm that uses that IP is presented in FPGA-based converter control.

FPGA-based dq current control using Model Composer

The Model Composer implementation of the FPGA-based vector current controller is shown below.

For more details on how to generate an IP and how to integrate it to the FPGA of imperix controllers, please refer to the introductory

note to Model Composer.

Download TN144_FPGA_DQ_Current_Control_Model_Composer.zip

Implementation of the FPGA-based PI controller using Model Composer

PI_d and PI_q subsystems

https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl.png
https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl.png
https://imperix.com/doc/implementation/high-level-synthesis-for-fpga
https://imperix.com/doc/implementation/fpga-based-inverter-control
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/help/xilinx-model-composer
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/TN144_FPGA_DQ_Current_Control_Model_Composer.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/TN144_FPGA_DQ_Current_Control_Model_Composer.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/tn144_dq_current_control.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/tn144_dq_current_control.png
https://imperix.com/doc/wp-content/uploads/2022/05/tn144_PI.png
https://imperix.com/doc/wp-content/uploads/2022/05/tn144_PI.png

saturation subsystem

Testbench of the Model Composer implementation

Model Composer allows the user to test his implementation directly from within Simulink in an offline simulation. For comparison

purposes with the Vitis HLS approach, the same inputs as the Vitis testbench are fed to the Model Composer model.

A previously-validated Simulink implementation of the vector current controller serves as a reference for both Vitis HLS and Model

Composer testbenches.

Simulink testbench with reference model (top) and Model Composer implementation (bottom)

https://imperix.com/doc/wp-content/uploads/2022/05/tn144_saturation.png
https://imperix.com/doc/wp-content/uploads/2022/05/tn144_saturation.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/tn144_toplvl-775x1024.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/tn144_toplvl-775x1024.png

Reference model

Model under test (Model Composer)

FPGA-based dq current control using Xilinx Vitis HLS

The complete Vitis HLS sources of the FPGA-based vector current controller can be downloaded below:

Download TN144_FPGA_DQ_Current_Control_Vitis_HLS.zip

Below is the C++ code of the algorithm used in this example, for reference. From there, this code can be used to generate an IP and

integrate it into the FPGA of an imperix controller, following the instructions of the introductory note to Vitis HLS.

Vitis HLS source of the dq current controller (C++)

#include "dq_current_ctrl.h"

#include <hls_stream.h>
#include <stdint.h>
#include <hls_math.h>

float saturation(float in, bool& sat)
{
 #pragma HLS INLINE

 if(in > MAX_SAT) {
 sat = 1;
 return MAX_SAT;
 } else if(in < MIN_SAT) {
 sat = 1;
 return MIN_SAT;

https://imperix.com/doc/wp-content/uploads/2021/06/image-272.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-272.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-273-1024x665.png
https://imperix.com/doc/wp-content/uploads/2021/06/image-273-1024x665.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/TN144_FPGA_DQ_Current_Control_Vitis_HLS.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/07/TN144_FPGA_DQ_Current_Control_Vitis_HLS.zip
https://imperix.com/doc/help/xilinx-vitis-hls

 } else {
 sat = 0;
 return in;
 }
}

void pi_d(float kp, float kiTs, float Id, float Id_ref, float& pi_out_d)
{
 #pragma HLS INLINE

 static float accum_d = 0;
 static bool sat_d = 0;
 #pragma HLS RESET variable=accum_d
 #pragma HLS RESET variable=sat_d

 float err_d,P_d,I_d,next_out_d;
 bool clamp_d;

 err_d = Id_ref - Id;
 P_d = kp*err_d;
 I_d = kiTs*err_d;

 clamp_d = (hls::signbit(accum_d) == hls::signbit(err_d)) & sat_d;
 if(!clamp_d) {
 accum_d += I_d;
 }

 next_out_d = accum_d + P_d;
 pi_out_d = saturation(next_out_d,sat_d);
}

void pi_q(float kp, float kiTs, float Iq, float Iq_ref, float& pi_out_q)
{
#pragma HLS INLINE

 static float accum_q = 0;
 static bool sat_q = 0;
 #pragma HLS RESET variable=accum_q
 #pragma HLS RESET variable=sat_q

 float err_q = Iq_ref - Iq;
 float P_q = kp*err_q;
 float I_q = kiTs*err_q;

 bool clamp_q = (hls::signbit(accum_q) == hls::signbit(err_q)) & sat_q;
 if(!clamp_q) {
 accum_q += I_q;
 }

 float next_out_q = accum_q + P_q;
 pi_out_q = saturation(next_out_q,sat_q);
}

void vitis_dq_current_ctrl(
 hls::stream<float>& in_Id_ref,
 hls::stream<float>& in_Iq_ref,
 hls::stream<float>& in_Id,
 hls::stream<float>& in_Iq,
 hls::stream<float>& in_Ud,
 hls::stream<float>& in_Uq,
 hls::stream<float>& in_kp,
 hls::stream<float>& in_kiTs,
 hls::stream<float>& out_Ed_ref,
 hls::stream<float>& out_Eq_ref,
 hls::stream<float>& out_E0_ref)
{
 #pragma HLS INTERFACE axis port=in_Id_ref
 #pragma HLS INTERFACE axis port=in_Iq_ref
 #pragma HLS INTERFACE axis port=in_Id
 #pragma HLS INTERFACE axis port=in_Iq
 #pragma HLS INTERFACE axis port=in_Ud
 #pragma HLS INTERFACE axis port=in_Uq
 #pragma HLS INTERFACE axis port=in_kp
 #pragma HLS INTERFACE axis port=in_kiTs
 #pragma HLS INTERFACE axis port=out_Ed_ref
 #pragma HLS INTERFACE axis port=out_Eq_ref
 #pragma HLS INTERFACE axis port=out_E0_ref
 #pragma HLS interface ap_ctrl_none port=return

 float Id_ref = in_Id_ref.read();
 float Iq_ref = in_Iq_ref.read();

 float Id = in_Id.read();
 float Iq = in_Iq.read();
 float Ud = in_Ud.read();
 float Uq = in_Uq.read();
 float kp = in_kp.read();
 float kiTs = in_kiTs.read();

 float pi_out_d, pi_out_q,Ed_ref,Eq_ref,E0_ref;

 pi_d(kp, kiTs, Id, Id_ref, pi_out_d);
 pi_q(kp, kiTs, Iq, Iq_ref, pi_out_q);

 Ed_ref = -Iq*wL + Ud + pi_out_d;
 Eq_ref = Id*wL + Uq + pi_out_q;
 E0_ref = 0;

 out_Ed_ref.write(Ed_ref);
 out_Eq_ref.write(Eq_ref);
 out_E0_ref.write(E0_ref);
}
Code language: C++ (cpp)

Note that the integrators are represented as accumulators, using static variables. The directive #pragma HLS RESET is used to control

the reset of integrators (e.g. when the control is not active, the integrator should be kept at reset). Since the polarity of the reset signal

will be automatically set to active low when using AXI4, it is not necessary to specify it explicitly.

Note also that in the codes above, the integral gain is instead of , which means that in the Vivado project, a floating-point

multiplier is needed to compute before this module. The reason to do this is not technical, but just to be consistent with the

Model Composer implementation (see below), which is limited to 8 input/output ports.

Testbench of the Vitis HLS implementation

Simulating the closed-loop control behavior of the developed current controller in Vitis HLS is uneasy since it would require a model of

the control process (i.e. model of the PWM modulators, of the power converter, and of the acquisition of the measurements). Instead,

we can run the Vitis HLS controller using the same input signals as an already-validated Simulink model, and validate the

implementation by comparing the results.

The input signals of this testbench are the following two sine signals (the other inputs are kept constant for simplification):

The simulation results are stored in a CSV file and plotted with MATLAB on top of the results of the Simulink (and Model Composer)

models for comparison. The comparison is done at the bottom of this page.

The testbench is executed using the following code:

Vitis HLS dq current controller testbench

#include "dq_current_ctrl.h"

#include "ap_fixed.h"
#include "math.h"
#include <hls_stream.h>
#include <stdint.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#define ITERATIONS 1000
#define two_pi 6.283185307f

int main()
{

/* Test signals */
hls::stream<float> tb_in_Id_ref;
hls::stream<float> tb_in_Iq_ref;
hls::stream<float> tb_in_Id;
hls::stream<float> tb_in_Iq;
hls::stream<float> tb_in_Ud;
hls::stream<float> tb_in_Uq;
hls::stream<float> tb_in_kp;
hls::stream<float> tb_in_kiTs;

KiTs Ki

Ki ⋅ Ts

Id = 5 sin(100π ⋅ nTs)

Iq = 5 sin(100π ⋅ nTs +
π

2
)

n = 0, 1, 2, … , 999

Ts = 5 × 10−5

hls::stream<float> tb_out_Ed_ref;
hls::stream<float> tb_out_Eq_ref;
hls::stream<float> tb_out_E0_ref;

/* Test inputs*/
float in_Id_ref = 0;
float in_Iq_ref = 0;
float in_Id;
float in_Iq;
float in_Ud = 0;
float in_Uq = 0;
float in_kp = 10;
float in_kiTs = 0.05;

float angle = 0;
float Ts = 0.00005; // fs = 20kHz
float wt = two_pi*50*Ts; // fgrid = 50Hz

/* Test outputs */
float out_Ed_ref;
float out_Eq_ref;

/* Create csv file to store simulation data*/
FILE *outputs;
outputs = fopen ("outputs.csv", "w+");
fprintf(outputs,"%s","Ed_ref,Eq_ref\n");

/* Run model */
for (int i = 0; i < ITERATIONS; i++)
{

angle = remainder((angle+wt),two_pi);
in_Id = 5*sin(angle);
in_Iq = 2*sin(angle+two_pi/4);

tb_in_Id_ref.write(in_Id_ref);
tb_in_Iq_ref.write(in_Iq_ref);
tb_in_Id.write(in_Id);
tb_in_Iq.write(in_Iq);
tb_in_Ud.write(in_Ud);
tb_in_Uq.write(in_Uq);
tb_in_kp.write(in_kp);
tb_in_kiTs.write(in_kiTs);

vitis_dq_current_ctrl(tb_in_Id_ref,tb_in_Iq_ref,tb_in_Id,tb_in_Iq,tb_in_Ud,tb_in_Uq,tb_in_kp,tb_in

out_Ed_ref = tb_out_Ed_ref.read();
out_Eq_ref = tb_out_Eq_ref.read();

fprintf(outputs,"%f,%f %s",out_Ed_ref,out_Eq_ref,"\n");
}

fclose(outputs);

printf("------ Test Passed ------\n");

/* End */
return 0;

}
Code language: C++ (cpp)

Testbench results

The graph below shows that all three implementations have the same behavior, which validates that the Vitis HLS and Model

Composer implementations are correct.

https://imperix.com/doc/wp-content/uploads/2021/06/dq_outputs-1.png
https://imperix.com/doc/wp-content/uploads/2021/06/dq_outputs-1.png

Testbench results with reference model (cpu), Vitis HLS (vitis), and Model Composer (xmc)

Further readings

A similar approach is used in the implementation of a grid synchronization module for the FPGA. Both these IPs are used in FPGA-

based converter control.

https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/fpga-based-inverter-control
https://imperix.com/doc/implementation/fpga-based-inverter-control

