
FPGA-based control of a grid-tied inverter

TN147 | Posted on June 2, 2021 | Updated on May 7, 2025

Shu WANG

Development Engineer

•

Table of Contents

Grid-tied inverter control

Overview of the FPGA-based inverter control task

Performance analysis of the control task

Latency and control delay

Resource utilization

Experimental validation

Testbench description

Experimental results

Creation of the Vivado block design

Raw ADC data conversion

Sample time (Ts) conversion

Grid synchronization

DQ current control

Duty cycles computation

PWM generation

CPU-side implementation

Debugging and monitoring

This note presents an FPGA control implementation of a grid-tied current-controlled inverter.

It combines several control modules presented in different Technical Notes to form a complete

converter control, executed entirely in the FPGA of a B-Box RCP controller.

Thanks to the FPGA programmability of the B-Box controller, complex control algorithms can

be effectively executed at high rates and with minimal latency. In particular, this example

shows that a grid-oriented current control algorithm can be executed as fast as 650 kHz,

whereas the equivalent CPU-based execution is “limited” to 210 kHz (which is already an

industry-leading figure amongst prototyping controllers).

Besides, the fast switching frequency used in this example takes full advantage of the imperix

SiC phase leg module.

To find all FPGA-related notes, you can visit FPGA development homepage.

https://www.linkedin.com/in/shu-wang-6581221b9/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/software/fpga-programming/
https://imperix.com/products/power/sic-power-module/
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

Grid-tied inverter control

The controlled system is a standard current-controlled voltage-source inverter, connected to a

3-phase grid. This converter is built using imperix power modules in the experimental

validation section.

Grid-tied voltage-source inverter

The control algorithm is entirely executed in the controller FPGA and implements a three-phase

PLL for grid synchronization coupled to a standard dq current control in the grid-oriented

reference frame. Based on user-defined current references, the controller computes the

voltages that the inverter should produce in order to match the required current. These

voltages are then modulated in PWM signals and fed to the gates of the inverter.

The overall inverter control algorithm is shown below, and each of the elementary control

blocks is further described in the following sections.

Block diagram of the implemented FPGA-based control algorithm (simplified view)

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Converter_scheme_v2_100pc.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/Converter_scheme_v2_100pc.png
https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/vector-current-control
https://imperix.com/doc/wp-content/uploads/2022/01/Block_diagram_CPU_FPGA_100pc.png
https://imperix.com/doc/wp-content/uploads/2022/01/Block_diagram_CPU_FPGA_100pc.png

Overview of the FPGA-based inverter control task

Below is shown the implemented Vivado block design used to generate the FPGA bitstream.

The creation of the Vivado block design section describes in more detail how to reproduce this

block design. All the sources can be downloaded by clicking on the button below.

Download TN147_block_design.pdf

The design uses the following IPs

ADC conversion module (Vitis HLS)

Ts conversion module (Vitis HLS)

Grid synchronization module (Vitis HLS or Model Composer, documented in TN143)

Dq current controller (Vitis HLS or Model Composer, documented in TN144)

duty cycle computation module (Vitis HLS)

Carrier-based PWM module (System Generator or HDL Coder, documented in TN141)

Download TN147_FPGA_Grid_Tied_Inverter.zip

These IPs have been implemented using High-Level Synthesis tools such as Vitis HLS (free of

cost, C++) and Model Composer (~500$, requires MATLAB Simulink). These tools offer a

simple yet powerful way of developing control algorithms in FPGA.

Performance analysis of the control task

Without any special optimization, the latency of the presented inverter control algorithm is

roughly 1.5µs (see details below), which means that it can run above 650 kHz. Comparatively,

the similar CPU-based algorithm presented in TN106 can run at up to 210 kHz.

Latency and control delay

The total latency can be estimated by simply adding up the latency of each module, which are:

Module

Latency

Vitis HLS

Latency

Model Composer

ADC conversion 24 cycles 24 cycles

Total latency
379 cycles

(1.52µs)

363 cycles

(1.45µs)

https://imperix.com/doc/wp-content/uploads/2022/05/image-12.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-12.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/TN147_block_design.pdf
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/TN147_block_design.pdf
https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/fpga-based-dq-current-control
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/wp-content/uploads/2021/06/TN147_FPGA_Grid_Tied_Inverter.zip
https://imperix.com/doc/wp-content/uploads/2021/06/TN147_FPGA_Grid_Tied_Inverter.zip
https://imperix.com/doc/help/xilinx-vitis-hls
https://imperix.com/doc/help/xilinx-model-composer
https://imperix.com/doc/implementation/vector-current-control

Module

Latency

Vitis HLS

Latency

Model Composer

Grid synchronization 145 cycles 146 cycles

DQ current control 72 cycles 56 cycles

Duty cycles computation 138 cycles 137 cycles

Total latency
379 cycles

(1.52µs)

363 cycles

(1.45µs)

That estimated latency is comparable to the measured latency of 385 cycles (1.54µs) with the

Vitis HLS implementation. The Model Composer approach achieves a slightly lower latency

thanks to automatic optimization but at the expense of slightly higher resource utilization.

Considering a conversion time of the ADC chip of 2µs, the total control delay is 3.54µs, which

is larger than one sampling period (chosen 2.5µs – 400kHz). Therefore, the execution of the

control task is pipelined with the ADC acquisition, as shown in the figure below. The control

delay to consider when tuning the current controller is therefore .

Further details on control delay identification can be found in the PN142.

Controller tuning

The gains of the PI controllers are tuned using the Magnitude Optimum, as introduced in

Vector current control. The total delay of the control loop is identified as:

Control delay:

Modulator delay (double-rate update):

Sensing delay: (16 kHz filter)

Total loop delay:

Resource utilization

The resource utilization is estimated by Vivado after the implementation and is shown below,

for the Vitis HLS approach.

Td,ctrl = 2Ts

Td,ctrl = 2Ts = 5µs

Td,PWM = Tsw/4 = Ts/2 = 1.25µs

Td,sens ≈ 10µs

Td,tot = Td,ctrl + Td,PWM + Td,sens ≈ 16.25µs

https://cdn.imperix.com/doc/wp-content/uploads/2021/06/execution_pipeline.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/execution_pipeline.png
https://imperix.com/doc/help/discrete-control-delay
https://imperix.com/doc/implementation/vector-current-control

Resource

Utilization

(inverter control)

Utilization

(imperix firmware 3.6) Total utilization

LUT 18’733 24’220 42’953 (54.65%)

LUTRAM 115 798 913 (3.43%)

FF 30’713 50’732 81’445 (51.81%)

BRAM 2 37 39 (14.72%)

DSP 104 0 104 (26%)

FPGA resource utilization of the inverter control algorithm and the imperix firmware

Resource utilization and latency may vary depending on the software’s versions, selected

synthesis/placement optimizations, etc.

Experimental validation

Testbench description

A physical testbench is built to validate the developed control strategy experimentally, using

the following equipment:

Controller: B-Box RCP with ACG SDK for Simulink

Inverter: 3x PEB8024 phase leg module with fast-switching SiC MOSFETs

Grid inductors: from passive filters box

https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/software/acg-sdk/simulink/
https://imperix.com/products/power/sic-power-module/
https://imperix.com/products/power/filter-box/

The main operating parameters are summarized in the tables below.

Parameter Value

DC bus voltage 750 V

Grid voltage 380 V

Grid inductor (from filter box) 2.36 mH

Parameter Value

Sampling frequency 400 kHz

Control frequency (FPGA) 400 kHz

Switching frequency 200 kHz

Due to the high switching frequency of this application (200kHz), the PWM modulators are

configured with a small deadtime (200ns). Therefore, only PEB8024 power modules, which

support smaller deadtimes can be used for this testbench. Using other types of modules may

result in irreversible damage to the semiconductors.

Experimental results

Various reference steps are performed on the d- and q-axis current references to validate the

reference tracking and perturbation rejection abilities of the developed algorithm.

https://imperix.com/doc/wp-content/uploads/2022/01/setup_photo_v2-1024x894.png
https://imperix.com/doc/wp-content/uploads/2022/01/setup_photo_v2-1024x894.png
https://imperix.com/products/power/filter-box/

The graph below shows the measured grid currents when the d-axis current reference takes

the values 5, 12, and 8 A.

Measured grid currents when changing the d-axis current reference

When projected into the dq rotating reference frame, the measured grid currents give the

following results. It can be seen that the current reference is successfully and rapidly tracked

by the d-axis controllers and that the perturbation is well rejected on the q axis.

Measured grid currents in the dq reference frame when changing the d-axis current

reference

If the same reference steps are performed on the q-axis, the same observations can be made.

Measured grid currents in the dq reference frame when changing the q-axis current

reference

https://imperix.com/doc/wp-content/uploads/2022/01/abc_currents_vitis_steps.png
https://imperix.com/doc/wp-content/uploads/2022/01/abc_currents_vitis_steps.png
https://imperix.com/doc/wp-content/uploads/2022/01/dstep_vitis.png
https://imperix.com/doc/wp-content/uploads/2022/01/dstep_vitis.png
https://imperix.com/doc/wp-content/uploads/2022/01/qstep_vitis.png
https://imperix.com/doc/wp-content/uploads/2022/01/qstep_vitis.png

Creation of the Vivado block design

This section provides a step-by-step explanation of how to re-create the Vivado project to

generate the FPGA bitstream of the Grid-tied inverter control.

Information on how to create an FPGA control template is available on the Getting started with

FPGA control impl.

To find all FPGA-related notes, you can visit the FPGA development homepage.

Raw ADC data conversion

The ADC conversion results are available from the AXI4-Stream interfaces M_AXIS_ADC of the

“ix axis interface” module. They return the raw 16-bit signed integer result from the ADC chips.

The ADC conversion IP shown below serves to convert that raw data into the actual measured

quantities in the float datatype. Knowing the sensitivity of the sensor and the B-Box RCP

front-end gain , the formula below can be used:

A numerical example of gain computation is available in the last section of the B-Box analog

frontend configuration page.

Vitis HLS – ADC conversion C++ source

#include "ADC_conversion.h"

#include <hls_stream.h>
#include <stdint.h>

void adc_conversion(
 hls::stream<int16_t>& adc_in,
 hls::stream<float>& adc_gain,
 hls::stream<float>& adc_offset,
 hls::stream<float>& adc_out)
{
// see https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-interface

S

G

α[bit/A] = S ⋅ G ⋅ 32768/10

https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/fpga-development-on-imperix-controllers
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/help/analog-front-end-configuration-on-b-box-rcp
https://imperix.com/doc/wp-content/uploads/2022/01/float_convertion_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/float_convertion_module.png
https://imperix.com/doc/wp-content/uploads/2022/05/image.png
https://imperix.com/doc/wp-content/uploads/2022/05/image.png

// "both" means registers are placed on TDATA, TVALID, and TREADY
#pragma HLS INTERFACE axis port=adc_in register_mode=both register
#pragma HLS INTERFACE axis port=adc_gain register_mode=both register
#pragma HLS INTERFACE axis port=adc_offset register_mode=both register
#pragma HLS INTERFACE axis port=adc_out register_mode=both register
// turns off block-level I/O protocols
#pragma HLS interface ap_ctrl_none port=return

 int16_t adc = adc_in.read();
 float gain = adc_gain.read();
 float offset = adc_offset.read();
 float result = (float)adc * gain - offset;
 adc_out.write(result);
}Code language: C++ (cpp)

This ADC conversion module is connected as shown in the two screenshots below. The AXI4-

Stream Broadcaster IP (included with Vivado) serves to propagate an AXI4-Stream to multiple

ports.

The “adc” hierarchy contains the conversion logic

https://imperix.com/doc/wp-content/uploads/2022/05/5.png
https://imperix.com/doc/wp-content/uploads/2022/05/5.png

Content of the “adc” hierarchy

Sample time (Ts) conversion

The M_AXIS_Ts port of the “ix axis interface” provides the sample period in nanoseconds in

a 32-bit unsigned integer format. This signal is the time distance between two consecutive

samples.

The Ts conversion module shown below converts this signal into a floating-point value in

seconds. The result will be used by the PI controllers of the Grid synchronization module and

the dq current control module.

Vitis HLS – Ts conversion C++ source

Ts

https://imperix.com/doc/wp-content/uploads/2022/05/3.png
https://imperix.com/doc/wp-content/uploads/2022/05/3.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-2.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-2.png

#include "Ts_conversion.h"

#include <hls_stream.h>
#include <stdint.h>

void ts_conversion(
 hls::stream<uint32_t>& Ts_ns_in,
 hls::stream<float>& Ts_s_out)
{

// see https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-interface
// "both" means registers are placed on TDATA, TVALID, and TREADY
#pragma HLS INTERFACE axis port=Ts_ns_in register_mode=both register
#pragma HLS INTERFACE axis port=Ts_s_out register_mode=both register
// turns off block-level I/O protocols
#pragma HLS interface ap_ctrl_none port=return

 uint32_t Ts_ns = Ts_ns_in.read();
 // convert from nanoseconds to seconds
 float Ts_s = (float)Ts_ns * 0.000000001f;
 Ts_s_out.write(Ts_s);
}Code language: C++ (cpp)

Grid synchronization

The grid synchronization is done using the dq-type PLL which transforms both the grid

voltages and currents into dq components, that are used in the dq current controller.

The grid synchronization IP shown below is documented in the FPGA impl. of a PLL for grid

sync page.

https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/implementation/fpga-implementation-pll
https://imperix.com/doc/wp-content/uploads/2022/01/grid_snychro_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/grid_snychro_module.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-3.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-3.png

In the Vivado project, the IP is connected as follows. An AXI4-Stream Broadcaster is used

because the sample time (Ts) signal is also connected to the dq current controller as shown in

the next section.

DQ current control

The implementation of the dq current controller is detailed in FPGA-based PI for dq current

control. It consists of two identical PI controllers with a decoupling network for independent

control of the d- and q-components of the grid current.

The kiTs_dq port takes as input the results of Ts multiplied by Ki (Ki is a parameter set from

the CPU, using the port CPU2FPGA_10). The multiplication is performed using a Floating-Point

https://imperix.com/doc/wp-content/uploads/2022/05/image-4-1024x561.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-4-1024x561.png
https://imperix.com/doc/implementation/fpga-based-dq-current-control
https://imperix.com/doc/implementation/fpga-based-dq-current-control
https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl-2.png
https://imperix.com/doc/wp-content/uploads/2022/01/dq_current_ctrl-2.png

IP as shown below.

The dq current controller is connected as shown below. The inputs Kp, Id_ref, and Iq_ref are

connected to CPU2FPGA ports 11, 12, and 13.

Duty cycles computation

This block converts the voltage references computed by the dq current controller to abc

quantities , and computes the corresponding duty cycles (in the range [0,1]) according to

where is the period of the clock used in the PWM modulator, expressed in ticks (1 tick = 4

ns). The duty cycles are converted into uint16 numbers with a unit of ticks to be compatible

Eg,abc

dabc = (
Eg,abc

Vdc

+ 0.5) ⋅ Tclk,

Tclk

https://imperix.com/doc/wp-content/uploads/2022/05/image-5-1024x176.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-5-1024x176.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-6-1024x379.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-6-1024x379.png
https://imperix.com/doc/wp-content/uploads/2022/01/duty_cycle_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/duty_cycle_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/duty_cycles.png
https://imperix.com/doc/wp-content/uploads/2022/01/duty_cycles.png

with the PWM modulator.

It is connected as shown below. in_CLOCK_period is connected to CLOCK_1_period of the

IMPERIX_FW IP.

Vitis HLS – Duty cycles computation

#include "duty_cycles.h"

#include <hls_stream.h>
#include <stdint.h>

#include "ap_fixed.h"
#include "hls_math.h"

void dq02abc(float d, float q, float zero, float wt, float& A, float& B, float& C)
{
#pragma HLS inline

 const ap_fixed<16,2> sqrt3_2 = 0.86602540378444;// sqrt(3)/2

 ap_fixed<32,16> d_fix = (ap_fixed<32,16>)d;
 ap_fixed<32,16> q_fix = (ap_fixed<32,16>)q;
 ap_fixed<32,16> zero_fix = (ap_fixed<32,16>)zero;
 ap_fixed<16,4> wt_fix = (ap_fixed<16,4>)wt;

 ap_fixed<16, 2> cos_wt = hls::cos(wt_fix);
 ap_fixed<16, 2> sin_wt = hls::sin(wt_fix);

 ap_fixed<32,16> alpha_fix = d_fix*cos_wt - q_fix*sin_wt;
 ap_fixed<32,16> beta_fix = d_fix*sin_wt + q_fix*cos_wt;

 ap_fixed<32,16> A_fix = alpha_fix + zero_fix;
 ap_fixed<32,16> B_fix = zero_fix - alpha_fix/2 + sqrt3_2*beta_fix;
 ap_fixed<32,16> C_fix = zero_fix - alpha_fix/2 - sqrt3_2*beta_fix;

 A = (float)A_fix;
 B = (float)B_fix;
 C = (float)C_fix;
}

float sat(float input, float max_sat, float min_sat)
{
#pragma HLS inline

https://imperix.com/doc/wp-content/uploads/2022/05/image-8-1024x419.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-8-1024x419.png

 if(input > max_sat) {
 return max_sat;
 } else if(input < min_sat) {
 return min_sat;
 } else {
 return input;
 }
}

void vitis_duty_cycles(hls::stream<float>& in_Udc,
 hls::stream<float>& in_Ed_ref,
 hls::stream<float>& in_Eq_ref,
 hls::stream<float>& in_E0_ref,
 hls::stream<float>& in_theta,
 uint16_t in_CLOCK_period,
 uint16_t& out_dutycycle_A,
 uint16_t& out_dutycycle_B,
 uint16_t& out_dutycycle_C)
{
#pragma HLS INTERFACE axis port=in_Udc register_mode=both register
#pragma HLS INTERFACE axis port=in_Ed_ref register_mode=both register
#pragma HLS INTERFACE axis port=in_Eq_ref register_mode=both register
#pragma HLS INTERFACE axis port=in_E0_ref register_mode=both register
#pragma HLS INTERFACE axis port=in_theta register_mode=both register
#pragma HLS interface ap_ctrl_none port=return

 float Udc = in_Udc.read();
 float Ed_ref = in_Ed_ref.read();
 float Eq_ref = in_Eq_ref.read();
 float E0_ref = in_E0_ref.read();
 float theta = in_theta.read();

 float A,B,C;
 dq02abc(Ed_ref, Eq_ref, E0_ref, theta, A, B, C);

 float next_d_A = A/Udc + 0.5;
 float next_d_B = B/Udc + 0.5;
 float next_d_C = C/Udc + 0.5;

 float d_A = sat(next_d_A, 1.0, 0.0);
 float d_B = sat(next_d_B, 1.0, 0.0);
 float d_C = sat(next_d_C, 1.0, 0.0);

 ap_fixed<16,2> d_A_fix = (ap_fixed<16,2>)d_A;
 ap_fixed<16,2> d_B_fix = (ap_fixed<16,2>)d_B;
 ap_fixed<16,2> d_C_fix = (ap_fixed<16,2>)d_C;

 out_dutycycle_A = (uint16_t)(d_A_fix * in_CLOCK_period);
 out_dutycycle_B = (uint16_t)(d_B_fix * in_CLOCK_period);
 out_dutycycle_C = (uint16_t)(d_C_fix * in_CLOCK_period);
}
Code language: C++ (cpp)

PWM generation

Finally, the duty cycles are transformed into PWM signals in the PWM modulator block. The

implementation details are presented in PWM modulator implementation in FPGA.

The PWM block uses the clock signal CLOCK_1 as a reference to generate the PWM triangular

carrier signal. The switching frequency is therefore equal to the frequency of CLOCK_1, which

can be configured using a CLK block.

The high-side switching signals are obtained by comparing the 3 duty cycles with the

triangular carrier. The generation of the low-side switching signals is done by the SB-PWM

driver incorporated into the imperix IP and the dead time duration is specified in the CPU block

Sandbox PWM configurator.

dabc

https://imperix.com/doc/wp-content/uploads/2022/01/pwm_modulator_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/pwm_modulator_module.png
https://imperix.com/doc/wp-content/uploads/2022/01/pwm_modulator.png
https://imperix.com/doc/wp-content/uploads/2022/01/pwm_modulator.png
https://imperix.com/doc/implementation/fpga-pwm-modulator
https://imperix.com/doc/software/clock-generators
https://imperix.com/doc/wp-content/uploads/2022/05/image-9-1024x654.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-9-1024x654.png
https://imperix.com/doc/software/sandbox-pwm
https://imperix.com/doc/software/sandbox-pwm

Configuration of the SB-PWM block in Simulink

https://imperix.com/doc/wp-content/uploads/2021/06/deadtime_simulink.png
https://imperix.com/doc/wp-content/uploads/2021/06/deadtime_simulink.png

Mapping between sb_pwm and pwm ports of the imperix IP in Vivado

Thanks to the SB-PWM driver, the safety mechanism of the B-Box RCP is also available for

custom-made PWM modulators. In case an over-value is detected during operation, the PWM

outputs are immediately blocked and the operation is safely stopped.

https://imperix.com/doc/wp-content/uploads/2021/06/TN147_deadtime.png
https://imperix.com/doc/wp-content/uploads/2021/06/TN147_deadtime.png

CPU-side implementation

The CPU model shown below is only used for the following tasks:

Configuration:

Configure the sampling frequency using the Configuration block (CLOCK_0 = 100 kHz,

oversampling = 4)

Configure the modulator clocks using the CLK block (CLOCK_1 = 200 kHz)

Configure the ADC conversion parameters (gain and offset)

Parameter tuning:

Tune the controller gains (Kp and Ki)

Transfer the dq current references and to the FPGA

The mapping between SBI/SBO registers and CPU2FPGA/FPGA2CPU port is explained on the

Getting started page.

I ∗
g,d I ∗

g,q

https://imperix.com/doc/wp-content/uploads/2022/05/image-10-1024x880.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-10-1024x880.png
https://imperix.com/doc/software/config-control-task-configuration
https://imperix.com/doc/software/clock-generators
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/wp-content/uploads/2022/05/image-18-1024x273.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-18-1024x273.png

Debugging and monitoring

For debugging and monitoring purposes, internal signals of the FPGA inverter control model

can be split using AXI4-Stream Broadcaster IPs and routed to FPGA2CPU ports of the imperix

IP. This way, the signals can be accessed from the CPU, connected to probe variable blocks,

and observed using Cockpit.

Additionally, ADC blocks can still be used to observe the analog input signals. For accurate

readings, make sure the sensitivities of the ADC blocks match the gain parameter sent to the

FPGA!

Please note that if the FPGA control is running faster than the CPU, then the CPU will only see

a downsampled version of the observed signals.

Vivado block design with debug probes

Download TN147_block_design_with_debug_probes.pdf

Complete CPU model with debug probes and ADC blocks

To find all FPGA-related notes, you can visit FPGA development homepage.

https://imperix.com/doc/software/probe-variable
https://imperix.com/software/cockpit/
https://imperix.com/doc/wp-content/uploads/2022/05/block_design_with_debug_probes_screenshot-1024x241.png
https://imperix.com/doc/wp-content/uploads/2022/05/block_design_with_debug_probes_screenshot-1024x241.png
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/TN147_block_design_with_debug_probes.pdf
https://cdn.imperix.com/doc/wp-content/uploads/2021/06/TN147_block_design_with_debug_probes.pdf
https://imperix.com/doc/wp-content/uploads/2022/05/image-19-1024x668.png
https://imperix.com/doc/wp-content/uploads/2022/05/image-19-1024x668.png
https://imperix.com/doc/help/fpga-development-on-imperix-controllers

