
FPGA-based decoder for a Delta-Sigma modulator

TN149 | Posted on August 24, 2021 | Updated on May 7, 2025

Shu WANG

Development Engineer

•

Table of Contents

Introduction

Related notes

Software sources

Delta-sigma decoder implementation

Synchronous decoder for NRZ encoding

Manchester decoder

Delta-sigma modulator testbench

Deployment on the B-Board PRO

Experimental results

This technical note shows how to build a decoder IP for a Delta-Sigma Modulator and establish communication with such a device

through USR ports of the B-Box RCP and B-Board PRO. The corresponding approach uses the user-programmable area inside the

FPGA, also known as sandbox.

Introduction

Delta-Sigma Modulators are a class of analog-to-digital converters (ADCs) that produce a high-frequency data stream (1-bit), whose

pulse density represents the acquired analog value. In data acquisition applications, such devices are particularly useful when only a

few (typ. 1-2) digital lines are available. This may notably be essential when data must be carried across a galvanic isolation barrier,

such as in numerous power electronic applications.

Delta-sigma modulation may represent various modulation techniques, resulting in different types of data encoding methods for the

digital stream. Common types are Non-Return-to-Zero (NRZ) and Manchester coding. These techniques differ in their bitrates, but may

also offer (or not) the possibility of recovering the clock from the bit stream.

Clock recovery is often an essential feature. Indeed, by recovering the data clock directly from the stream itself, a separate clock

becomes dispensable, which further reduces the number of required communication lines. In practice, a delta-sigma modulator can

communicate with its associated demodulator with only one digital line!

This note provides an implementation example centered around the AMC1035 delta-sigma modulator, which supports two output

encoding methods: Non-Return-to-Zero (NRZ) and Manchester coding. The data rate of NRZ coding is 9~21MHz while the data rate of

Manchester coding is 9~11MHz. In the next chapter, a decoder for each coding method will be provided.

Related notes

Instructions on how to build an FPGA project template and how to exchange data between the CPU and the sandbox using the

AXI4-Stream interface module can be found in Getting started with FPGA control development.

The page AXI4-Stream IP from Xilinx presents the AXI4-Stream interface and the Xilinx AXI4-Stream IPs.

Another example of how to expand the number of ADC inputs using SPI and user ports is available in FPGA-based SPI

communication IP for ADC.

Software sources

AMC1035Download

https://www.linkedin.com/in/shu-wang-6581221b9/
https://imperix.com/products/control/rapid-prototyping-controller/
https://imperix.com/products/control/inverter-control-board/
https://en.wikipedia.org/wiki/Delta-sigma_modulation
https://en.wikipedia.org/wiki/Non-return-to-zero
https://en.wikipedia.org/wiki/Manchester_code
https://www.ti.com/lit/ds/symlink/amc1035.pdf?ts=1629991870512&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FAMC1035
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/implementation/axi4-stream-ip-from-xilinx
https://imperix.com/doc/implementation/fpga-based-spi-communication-ip
https://imperix.com/doc/implementation/fpga-based-spi-communication-ip
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/AMC1035.zip
https://cdn.imperix.com/doc/wp-content/uploads/2021/08/AMC1035.zip

Delta-sigma decoder implementation

Synchronous decoder for NRZ encoding

In synchronous mode, the clock signal is generated by the FPGA, transmitted to the delta-sigma modulator, and used by the latter for

the modulation. The same clock is then used for decoding the NRZ bit stream that is received by the FPGA. This approach uses two

physical USR ports available from the sandbox and one three-order sinc filter as a decimator.

In general, the suggested system diagram for a synchronous decoder is shown below.

System diagram using a synchronous decoder

The VHDL codes are given below.

AMC1035 driver using synchronous clock

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.std_logic_unsigned.all;
use IEEE.NUMERIC_STD.ALL;

entity amc_driver is
port(
-- Configuration from CPU

 AMC_M : in std_logic_vector(15 downto 0); -- Decimation ratio

-- Input from AMC1035:
 DATA_IN : in std_logic; -- Input bit stream
 CLK : in std_logic; -- AMC clock input

 -- sinc3 filter output using AXI4-Stream (Non-blocking)
 M_AXIS_DATA_tdata : out std_logic_vector(31 downto 0);
 M_AXIS_DATA_tvalid : out std_logic;

 -- Active low reset
 RESN : in std_logic

);
end amc_driver;

architecture rtl of amc_driver is

 ATTRIBUTE X_INTERFACE_INFO : STRING;
 ATTRIBUTE X_INTERFACE_INFO of CLK: SIGNAL is "xilinx.com:signal:clock:1.0 clk CLK";

 -- Divided CLK : f_CNR = f_CLK/M
 signal CNR : std_logic := '0';

 -- Intermediate signals of sinc3 filter
 signal DN0, DN1, DN3, DN5 : std_logic_vector(31 downto 0);
 signal CN1, CN2, CN3, CN4, CN5 : std_logic_vector(31 downto 0);
 signal DELTA1 : std_logic_vector(31 downto 0);

begin

 -- Generate divided CLK
 P_CNR : process(CLK)
 variable CNR_cnt: unsigned(15 downto 0):=(others=>'0');
 begin
 if rising_edge(CLK) then
 M_AXIS_DATA_tvalid <= '0'; -- Default
 -- Toggle CNR
 if CNR_cnt+1 >= unsigned('0' & AMC_M(15 downto 1)) then
 CNR_cnt := (others => '0');
 CNR <= not CNR;
 if CNR = '0' then
 M_AXIS_DATA_tvalid <= '1'; -- Data is valid at each CNR rising edge
 end if;
 else

https://en.wikipedia.org/wiki/Sinc_filter
https://imperix.com/doc/wp-content/uploads/2021/08/TN149_synchronous.png
https://imperix.com/doc/wp-content/uploads/2021/08/TN149_synchronous.png

 CNR_cnt := CNR_cnt + 1;
 end if;
 end if;
 end process P_CNR;

 -- sinc3 filter input
 process(CLK, RESN)
 begin
 if RESN = '0' then
 DELTA1 <= (others => '0');
 elsif CLK'event and CLK = '1' then
 if DATA_IN = '1' then
 DELTA1 <= DELTA1 + 1;
 end if;
 end if;
 end process;

 -- Integral
 process(RESN, CLK)
 begin
 if RESN = '0' then
 CN1 <= (others => '0');
 CN2 <= (others => '0');
 elsif CLK'event and CLK = '1' then
 CN1 <= CN1 + DELTA1;
 CN2 <= CN2 + CN1;
 end if;
 end process;

 -- Comb
 process(RESN, CNR)
 begin
 if RESN = '0' then
 DN0 <= (others => '0');
 DN1 <= (others => '0');
 DN3 <= (others => '0');
 DN5 <= (others => '0');
 elsif CNR'event and CNR = '1' then
 DN0 <= CN2;
 DN1 <= DN0;
 DN3 <= CN3;
 DN5 <= CN4;
 end if;
 end process;

 CN3 <= DN0 - DN1;
 CN4 <= CN3 - DN3;
 CN5 <= CN4 - DN5;
 M_AXIS_DATA_tdata <= CN5;

end rtl;

Code language: VHDL (vhdl)

The AMC1035 sends a NRZ (Non-Return-to-Zero) coded bit stream

The clock is generated by the FPGA and fed to the AMC1035 and decoder block, synchronously

The decimation ratio M can be configured from the CPU using an SBO register

The output data is a 32-bit unsigned integer available on an AXI4-Stream interface

The sinc3 filter is implemented using CIC (Cascaded integrator–comb filter) architecture as shown below. CIC is an efficient

implementation of a moving-average filter, which is built using adders and registers only. The relationship between the decimation

ratio M and the output data width is given in the table below.

https://imperix.com/doc/software/sandbox-output-towards-fpga
https://en.wikipedia.org/wiki/Cascaded_integrator-comb_filter

Xilinx sinc3 filter implementation (taken from TI document)

Decimation Date Rate (kHz) GainDC (bits) Total Output Width (bits)

4 2500 6 7

8 1250 9 10

16 625 12 13

32 312.5 15 16

64 156.2 18 19

Summary of the sin3 filter for 10MHz samping clock

Manchester decoder

In Manchester coding mode, the AMC1035 can be clocked with a local clock, whose phase and frequency are unknown. On the FPGA

side, this approach needs only one user port, for receiving the data stream, and one three-order sinc filter as decimator. In addition, a

Manchester decoder is needed to translate Manchester-encoded data to NRZ. This mode has the advantage of reducing the number

of used user ports but the drawback of a reduced data rate (down to 9~11MHz).

In general, the suggested system diagram using the Manchester decoder is shown below.

System diagram using Manchester decoder

The VHDL codes are given below.

AMC1035 driver using Manchester decoding

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.std_logic_unsigned.all;
use IEEE.NUMERIC_STD.ALL;

entity amc_driver_md is
port(
-- Configuration from CPU

 AMC_M: in std_logic_vector(15 downto 0); -- Decimation ratio

-- Input data from delta-sigma modulator
 DATA_IN : in std_logic; -- AMC DATA input

 -- sinc3 filter output using AXI4-Stream (Non-blocking)
 M_AXIS_DATA_tdata : out std_logic_vector(31 downto 0);
 M_AXIS_DATA_tvalid : out std_logic;

https://imperix.com/doc/wp-content/uploads/2021/08/xilinx_sinc3_impl.png
https://imperix.com/doc/wp-content/uploads/2021/08/xilinx_sinc3_impl.png
https://www.ti.com/lit/an/sbaa094/sbaa094.pdf?ts=1627980251600
https://imperix.com/doc/wp-content/uploads/2021/08/TN149_manchester.png
https://imperix.com/doc/wp-content/uploads/2021/08/TN149_manchester.png

 -- Decoder clock

CLK : in std_logic;

-- Active low reset
RESN : in std_logic
);

end amc_driver_md;

architecture rtl of amc_driver_md is

 ATTRIBUTE X_INTERFACE_INFO : STRING;
 ATTRIBUTE X_INTERFACE_INFO of CLK: SIGNAL is "xilinx.com:signal:clock:1.0 clk CLK";

 -- Intermediate signals of Manchester decoder
 signal Q0, Q1, Q2, Q3, Q4 : std_logic := '0';
 signal INV_1, INV_2, XOR2, OR2_1, AND2B1, AND2, OR2_2, AND3B2 : std_logic := '0';

 -- Manchester decoder output
 signal DATA_MD : std_logic; -- Output data
 signal STROBE : std_logic; -- Output data valid

 -- Divided AMC_CLK : f_CNR = f_CLK/M
 signal CNR_rising_edge : std_logic;
 signal CNR_cnt : unsigned(15 downto 0) := (others=>'0');

 -- Intermediate signals of sinc3 filter
 signal DN0, DN1, DN3, DN5 : std_logic_vector(31 downto 0);
 signal CN1, CN2, CN3, CN4, CN5 : std_logic_vector(31 downto 0);
 signal DELTA1 : std_logic_vector(31 downto 0);

begin

 -- Manchester decoder
 DATA_MD <= INV_2; -- 0: falling 1: rising
 INV_1 <= not Q0;
 INV_2 <= not Q1;
 XOR2 <= Q0 xor INV_2;
 OR2_1 <= XOR2 or Q2;
 AND2B1 <= OR2_1 and (not Q4);
 AND2 <= Q3 and OR2_2;
 OR2_2 <= Q2 or Q4;
 AND3B2 <= (not Q2) and (not Q4) and XOR2;

 P_MD : process(CLK)
 begin
 if rising_edge(CLK) then
 Q0 <= DATA_IN;
 Q1 <= INV_1;
 Q2 <= AND2B1;
 Q3 <= Q2;
 Q4 <= AND2;
 STROBE <= AND3B2;
 end if;
 end process P_MD;

 -- Generate CNR
 P_CNR : process(CLK, RESN)
 begin
 if RESN = '0' then
 CNR_cnt <= (others=>'0');
 elsif rising_edge(CLK) then
 CNR_rising_edge <= '0';
 if STROBE = '1' then -- Data is valid
 -- Toggle postscaled_CNR
 if CNR_cnt+1 >= unsigned(AMC_M) then
 CNR_rising_edge <= '1';
 CNR_cnt <= (others => '0');
 else
 CNR_cnt <= CNR_cnt + 1;
 end if;
 end if;
 end if;
 end process P_CNR;

 -- sinc3 filter
 P_SINC3 : process(CLK, RESN)
 begin
 if RESN = '0' then
 DELTA1 <= (others => '0');
 CN1 <= (others => '0');

 CN2 <= (others => '0');
 DN0 <= (others => '0');
 DN1 <= (others => '0');
 DN3 <= (others => '0');
 DN5 <= (others => '0');
 elsif rising_edge(CLK) then
 M_AXIS_DATA_tvalid <= '0'; -- Default
 -- Integral
 if STROBE = '1' then -- Data is valid
 if DATA_MD = '1' then
 DELTA1 <= DELTA1 + 1;
 end if;
 CN1 <= CN1 + DELTA1;
 CN2 <= CN2 + CN1;
 end if;
 -- Comb
 if CNR_rising_edge = '1' then
 M_AXIS_DATA_tvalid <= '1';
 DN0 <= CN2;
 DN1 <= DN0;
 DN3 <= CN3;
 DN5 <= CN4;
 end if;
 end if;
 end process P_SINC3;

 CN3 <= DN0 - DN1;
 CN4 <= CN3 - DN3;
 CN5 <= CN4 - DN5;
 M_AXIS_DATA_tdata <= CN5;

end rtl;
Code language: VHDL (vhdl)

The AMC1035 works in the Manchester coding mode

The clock used by the Manchester decoder can be asynchronous to the input data, but must be between 5 and 12 times,

nominally 8 times, faster than the input data rate. For the AMC1035 we can simply use a 80MHz clock

The decimation ratio M can be configured by the CPU using an SBO register

The output data is a 32-bit unsigned integer using AXI4-Stream interface

This FPGA implementation of a Manchester decoder uses two registers and a XOR gate for transition detect, and one divide-by-six

Johnson counter that locks up in the 000 state. Once a transition is detected, the STROBE flag will be asserted, indicating valid data,

then the 6-counter will terminate STROBE for the following 5 periods. This procedure ensures that no between-bit transition is detected

by mistake.

Manchester decoder circuit (taken from Manchester decoder in 3 CLBs)

The implementation of sinc3 filter uses the previously introduced CIC architecture. However, due to the different data-valid

mechanism, the sinc3 filter only accepts input data when STROBE is asserted, whereas in the previous design, it accepts data at each

rising edge of the synchronous clock.

Both blocks have the same name CLK for the clock input. They shall however NOT be confused.

For the synchronous decoder block, the CLK is the clock used by the AMC1035 running at 9~21MHz.

For the Manchester decoder block, the CLK is a specialized clock for Manchester decoding, running at 80MHz.

The reason why the same name is used for both clocks is that the AXI4-Stream interface is used to simplify the connection between

blocks. And any clock used by the AXI4-Stream must be named according to Xilinx conventions. Otherwise, a clock cannot be

automatically recognized.

Delta-sigma modulator testbench

For each block, a VHDL testbench simulating NRZ/Manchester coded bit streams is provided to validate the behavior of the two

decoders.

https://imperix.com/doc/software/sandbox-output-towards-fpga
https://imperix.com/doc/wp-content/uploads/2024/03/manchester_decoder_detail.png
https://imperix.com/doc/wp-content/uploads/2024/03/manchester_decoder_detail.png
https://www.mikrocontroller.net/attachment/62628/Manchester_Decoder_FPGA.pdf

Testbench for AMC1035 driver using synchronous clock

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity AMC_driver_tb is
end entity AMC_driver_tb;

architecture rtl of AMC_driver_tb is

constant MCLK_PERIOD : time := 100ns; -- DSM CLK
constant MCLK_LOW : time := MCLK_PERIOD / 2;
constant MCLK_HIGH : time := MCLK_PERIOD / 2;
signal mclk : std_logic;

signal RESN : std_logic;

signal DATA_IN : std_logic;
signal M : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(8, 16)); -- Decimation ratio

component amc_driver is
port(
-- Configuration from CPU

 AMC_M : in std_logic_vector(15 downto 0); -- Decimation ratio

-- Input from AMC1035:
 DATA_IN : in std_logic; -- Input bit stream
 CLK : in std_logic; -- AMC clock input

 -- sinc3 filter output using AXI4-Stream (Non-blocking)
 M_AXIS_DATA_tdata : out std_logic_vector(31 downto 0);
 M_AXIS_DATA_tvalid : out std_logic;

 -- Active low reset
 RESN : in std_logic

);
end component amc_driver;

-- input NRZ coded '0'
procedure input_0 (signal DATA_IN : inout std_logic) is
begin
 wait until rising_edge(mclk);
 DATA_IN <= '0';
 wait for MCLK_PERIOD;
end procedure input_0;

-- input NRZ coded '1'
procedure input_1 (signal DATA_IN : inout std_logic) is
begin
 wait until rising_edge(mclk);
 DATA_IN <= '1';
 wait for MCLK_PERIOD;
end procedure input_1;

begin
 dut: amc_driver
 port map (
 AMC_M => M,
 DATA_IN => DATA_IN,
 CLK => mclk,
 M_AXIS_DATA_tdata => open,
 M_AXIS_DATA_tvalid => open,
 RESN => RESN
);

 -- Reset process
 p_reset : process is
 begin
 wait until falling_edge(mclk);
 RESN <= '0';
 wait for 3*MCLK_PERIOD;
 RESN <= '1';
 wait;
 end process p_reset;

 -- MCLOCK process
 p_mclk: process is
 begin
 mclk <= '0';

 wait for 0.4 * MCLK_LOW;
 mclk <= '1';
 WAIT FOR MCLK_HIGH;
 mclk <= '0';
 wait for 0.6 * MCLK_LOW;
 end process p_mclk;

 -- Test process
 p_test : process is
 begin

 -- input "1001"
 input_1(DATA_IN);
 input_0(DATA_IN);
 input_0(DATA_IN);
 input_1(DATA_IN);

-- -- input "1000"
-- input_1(DATA_IN);
-- input_0(DATA_IN);
-- input_0(DATA_IN);
-- input_0(DATA_IN);

-- -- input "1110"
-- input_1(DATA_IN);
-- input_1(DATA_IN);
-- input_1(DATA_IN);
-- input_0(DATA_IN);

 -- Add more input patterns

 end process p_test;

end architecture rtl;
Code language: VHDL (vhdl)

Testbench for AMC1035 driver using Manchester decoding

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity AMC_driver_md_tb is
end entity AMC_driver_md_tb;

architecture rtl of AMC_driver_md_tb is

constant CLK_PERIOD : time := 12.5ns; -- Decoder CLK
constant CLK_LOW : time := CLK_PERIOD / 2;
constant CLK_HIGH : time := CLK_PERIOD / 2;
signal clk : std_logic;

constant MCLK_PERIOD : time := 100ns; -- DSM CLK
constant MCLK_LOW : time := MCLK_PERIOD / 2;
constant MCLK_HIGH : time := MCLK_PERIOD / 2;
signal mclk : std_logic;

signal RESN : std_logic;

signal DATA_IN : std_logic;
signal M : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(8, 16)); -- Decimation ratio

component amc_driver_md is
port(
-- Configuration from CPU

 AMC_M: in std_logic_vector(15 downto 0); -- Decimation ratio

-- Input data from delta-sigma modulator
 DATA_IN : in std_logic; -- AMC DATA input

 -- sinc3 filter output using AXI4-Stream (Non-blocking)
 M_AXIS_DATA_tdata : out std_logic_vector(31 downto 0);
 M_AXIS_DATA_tvalid : out std_logic;

 -- Decoder clock

CLK : in std_logic;

-- Active low reset
RESN : in std_logic
);

end component amc_driver_md;

-- input Manchester coded '0'
procedure input_0 (signal DATA_IN : inout std_logic) is
begin
 wait until rising_edge(mclk);
 DATA_IN <= '1';
 wait until falling_edge(mclk);
 DATA_IN <= '0';
end procedure input_0;

-- input Manchester coded '1'
procedure input_1 (signal DATA_IN : inout std_logic) is
begin
 wait until rising_edge(mclk);
 DATA_IN <= '0';
 wait until falling_edge(mclk);
 DATA_IN <= '1';
end procedure input_1;

begin
 dut: amc_driver_md
 port map (
 AMC_M => M,
 DATA_IN => DATA_IN,
 M_AXIS_DATA_tdata => open,
 M_AXIS_DATA_tvalid => open,

CLK => clk,
RESN => RESN

);

 -- Reset process
 p_reset : process is
 begin
 wait until falling_edge(clk);
 RESN <= '0';
 wait for 3*CLK_PERIOD;
 RESN <= '1';
 wait;
 end process p_reset;

 -- Decoder CLOCK process
 p_clk: process is
 begin
 clk <= '0';
 wait for CLK_LOW;
 clk <= '1';
 WAIT FOR CLK_HIGH;
 end process p_clk;

 -- DSM CLOCK process
 p_mclk: process is
 begin
 mclk <= '0';
 wait for 0.4 * MCLK_LOW;
 mclk <= '1';
 WAIT FOR MCLK_HIGH;
 mclk <= '0';
 wait for 0.6 * MCLK_LOW;
 end process p_mclk;

 -- Test process
 p_test : process is
 begin

 -- input "1001"
 input_1(DATA_IN);
 input_0(DATA_IN);
 input_0(DATA_IN);
 input_1(DATA_IN);

-- -- input "1000"
-- input_1(DATA_IN);
-- input_0(DATA_IN);
-- input_0(DATA_IN);
-- input_0(DATA_IN);

-- -- input "1110"
-- input_1(DATA_IN);
-- input_1(DATA_IN);
-- input_1(DATA_IN);
-- input_0(DATA_IN);

 -- Add more input patterns

 end process p_test;

end architecture rtl;
Code language: VHDL (vhdl)

In this testbench, we chose a decimation rate of . The output word size is then 9 bits, and the maximum output range is

. We can select different input patterns, and the sinc3 filter output will be proportional to the number of ‘1’s in the bit

stream.

Input pattern = “1001” (50% 1s), output = 256

Synchronous decoder

Manchester decoder

Input pattern = “1000” (25% 1s), output = 128

Synchronous decoder

Manchester decoder

Deployment on the B-Board PRO

This Vivado project shows how to add the synchronous decoder and/or Manchester decoder block to the B-Board firmware and send

output data to the CPU through ix_axis_interface. This project starts from the template introduced in Getting started with FPGA

control development, and the following blocks are added to the project.

clk_10m is the 10MHz clock source for the AMC1035 and its output is connected to the physical pin USR[0]
clk_80m is the 80MHz clock for Manchester decoding

amc_driver_0 and amc_driver_md_0 are the synchronous decoder and Manchester decoder blocks, their input DATA_IN is

connected to the physical pin USR[1]
Two AXI4-Stream FIFOs are used to deal with the asynchronous data transfer between different clock fields, their outputs are

sent to the CPU through FPGA2CPU_00 and FPGA2CPU_01
The decimation ratio M is sent to the FPGA through SBO_reg_32
proc_sys_reset_10mhz and proc_sys_reset_80mhz provide active low resets for the 10MHz and 80MHz clock fields, their

ext_reset_n input is connected to nReset_sync port of ix_axis_interface

M = 8

29 − 1 = 511

https://imperix.com/doc/wp-content/uploads/2021/08/SD_sim_1001.png
https://imperix.com/doc/wp-content/uploads/2021/08/SD_sim_1001.png
https://imperix.com/doc/wp-content/uploads/2021/08/MD_sim_1001.png
https://imperix.com/doc/wp-content/uploads/2021/08/MD_sim_1001.png
https://imperix.com/doc/wp-content/uploads/2021/08/SD_sim_1000.png
https://imperix.com/doc/wp-content/uploads/2021/08/SD_sim_1000.png
https://imperix.com/doc/wp-content/uploads/2021/08/MD_sim_1000.png
https://imperix.com/doc/wp-content/uploads/2021/08/MD_sim_1000.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development

This project has both implementations integrated. In a real application, users can choose one approach or the other, according to their

needs.

Before synthesizing the project, Vivado will report timing failure at reg_M because the asynchronous data transfer (due to the 250MHz

FPGA main clock and the 10MHz/80MHz decoder clock) may lead to a metastable state. However, since we know that, in reality, there

will be enough time to wait for a new stable state, this issue can be safely ignored by setting a longer maximum delay. In order to do

this, a new constraint file must be added to the Vivado project following the instructions in Getting started with FPGA control

development. The constraints below shall be sufficient to circumvent this issue.

set_max_delay -from [get_pins {top_i/reg_M/U0/i_synth/i_bb_inst/gen_output_regs.output_regs/i_no_async_controls.ou
set_max_delay -from [get_pins {top_i/reg_M/U0/i_synth/i_bb_inst/gen_output_regs.output_regs/i_no_async_controls.ou

set_max_delay -from [get_pins {top_i/reg_M/U0/i_synth/i_bb_inst/gen_output_regs.output_regs/i_no_async_controls.ou
set_max_delay -from [get_pins {top_i/reg_M/U0/i_synth/i_bb_inst/gen_output_regs.output_regs/i_no_async_controls.ou

On the CPU side, a Simulink file is provided, which reads the sinc3 filter output and converts the uint32 data to Volts. As introduced in

its datasheet, the full-scale input range of AMC1035 is +/-1.25 V, then the sinc3 filter with decimation ratio converts the input to

 bits. Based on this, data can be recovered using the program below.

Experimental results

The following hardware was used:

B-Board evaluation kit

AMC1035 evaluation module

Function generator

M

1 + 3 log2M

https://imperix.com/doc/wp-content/uploads/2021/08/AMC_vivado_project.png
https://imperix.com/doc/wp-content/uploads/2021/08/AMC_vivado_project.png
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://imperix.com/doc/help/getting-started-with-fpga-control-development
https://www.ti.com/lit/ug/sbau320/sbau320.pdf?HQS=dis-mous-null-mousermode-dsf-pf-null-wwe&DCM=yes&ref_url=https%3A%2F%2Fwww.mouser.ch%2F&distId=26
https://imperix.com/doc/wp-content/uploads/2021/08/AMC_codegen-2-1024x365.png
https://imperix.com/doc/wp-content/uploads/2021/08/AMC_codegen-2-1024x365.png

A 50Hz 2V (p-p voltage) sine wave is connected to ADC 0 of the B-Board and the input port of the AMC1035, and the results are

plotted in BB Control. The three signals overlap properly, showing that the synchronous decoder and Manchester decoder blocks for

the delta-sigma modulator both work properly.

https://imperix.com/doc/wp-content/uploads/2021/08/amc_build_up-scaled.jpg
https://imperix.com/doc/wp-content/uploads/2021/08/amc_build_up-scaled.jpg
https://imperix.com/doc/wp-content/uploads/2021/08/test_result.png
https://imperix.com/doc/wp-content/uploads/2021/08/test_result.png

