
BOOMBOX
USER MANUAL

Contact

imperix ltd.
Rue de la Dixence 10
1950 Sion

phone : +41 (0)27 552 06 60
fax : +41 (0)27 552 06 69

www.imperix.ch
support@imperix.ch

Note

While every effort has been made to guarantee the
accuracy of this publication, no responsibility can be
accepted for errors or omissions. Data may change,
or may be altered by customer–specific hardware
or software variants. As such, the reader is strongly
advised to make sure to obtain copies of, and refer
to the most appropriate documentation, specifica-
tion or guidelines.

Limited warranty

Limited warranty

imperix ltd. (hereafter “imperix”) warrants
to the original purchaser or ultimate cus-
tomer (hereafter “Customer”) of the pres-
ent product (hereafter “Product”) that if
any part proves to be defective in mate-
rial or workmanship within two years, such
defective part will be repaired or replaced,
free of charge, at imperix’s discretion, if
shipped prepaid to imperix, Rue de la Dix-
ence 10, CH-1950 Sion, in a package equal
to or in the original container. The Prod-
uct will be returned freight prepaid and
repaired or replaced if it is determined by
imperix that the part failed due to defec-
tive materials or workmanship. Otherwise,
the fees will be charged to the Customer.
The repair or replacement of any defec-
tive part shall be imperix’s sole and exclu-
sive responsibility and liability under this
limited warranty.

The Customer must contact imperix’s cus-
tomer support team and obtain a Return
Authorization Number prior to shipping
any Product to imperix. The relevant con-
tact information can be found online on
the imperix website (www.imperix.ch).

If the Product is returned for repair more
than 24 months after purchase, the Cus-
tomer is responsible for the cost of repair.
imperix will assess the repair and submit
a quote to the Customer.

Return policy

The following fees will be applied when
the Customer returns a Product for credit:

A full credit, less a 15% fee will be issued
if the product is in perfect working con-
dition and returned within 1 month fol-
lowing the shipping date. If repairs are
required on the returned product, their
cost will be deducted from the credit.

Warranty limitation and exclusion

imperix ltd. will have no further obligation
under this limited warranty. All warranty
obligations of imperix are void, in particu-
lar, but not limited to, if:

• The Product has been subject to abuse,
misuse, negligence or accident;

• Repairs or changes have been done to
the Product by any other person than by
imperix or an authorized technician;

• The original Product identification (trade-
mark, serial number) markings have been
defaced, altered, or removed;

• The Customer fails to perform any of the
duties set forth in this limited warranty or
if the Product has not been operated in
accordance with instructions.

Disclaimer of unstated warranties

The present warranty is the only warranty
applicable to the Product. Other warran-
ties, express or implied, including, but not
limited to, the implied warranties of mer-
chantability or fitness for a particular pur-
pose are hereby disclaimed.

Limitation of liability

It is agreed that imperix’s liability, whether
in contract, in tort, under any warranty, in
negligence or otherwise shall not exceed
the purchase price payed by the Customer
for the said Product and under no circum-
stances shall imperix be liable for special,
indirect, or consequential damages. No
action, regardless of form, arising out of
the transactions under this warranty may
be brought by the purchaser more than
one year after the occurrence of the cause
of actions.

Foreword

The legacy from several decades of experience in academic teaching and research at
EPFL has given the BoomBox a strong influence that makes this control platform rather
different from most existing rapid prototyping systems. The BoomBox control platform
reuses some of the key features of its academic predecessor, but goes much further by
providing improved flexibility, I/O capability, simplicity and reliability.

Hence, the BoomBox is not only an advanced control platform, but is also, from a soft-
ware point of view, a strongly layered, yet essentially open system that customers are wel-
come to self-appropriate and edit up to their own needs, while guaranteeing a safe and
sound implementation. As a result, the BoomBox is the ultimate solution for its users to
get actively involved in the control design of innovative power electronic systems, and
to allow the fast implementation of high-end power converter prototypes.

Thanks to the same will to provide customers with the maximum possible flexibility and
openness, numerous advanced features are already available in hardware and will be
enabled in future software releases. By doing so, the flexibility of the BoomBox will be
even greater, allowing to temporarily or permanently enhance its feature set within min-
utes depending on the varying needs.

tabLe oF Contents

THE BOOMBOX 9

1.1 INTRODUCTION 9

1.2 BLOCK DIAGRAM 9

1.3 CAPABILITIES 10
1.3.1 Interfaces 10
1.3.2 Safety 10

1.4 CONTROLS AND CONNECTORS 11
1.4.1 Front panel 11
1.4.2 Back panel 11

INPUT / OUTPUT INTERFACES 13

2.1 FEATURES AND CAPABILITIES 13

2.2 ANALOG INPUTS 13
2.2.1 Basic principle of operation 13
2.2.2 Block diagram 14
2.2.3 Electrical specifications 14
2.2.4 Configurable input impedance 14
2.2.5 Configurable gain 14
2.2.6 Configurable low-pass filter 15
2.2.7 Configurable safety limits 15
2.2.8 Saving and restoring front-end configurations 15
2.2.9 Getting ADC measurements 16
2.2.10 Analog input connector pinout and cable 16
2.2.11 Usage example 16
2.2.12 Absolute maximum ratings 16

2.3 ANALOG OUTPUTS 17
2.3.1 Block diagram 17
2.3.2 Electrical specifications 17
2.3.3 Setting the output voltage 17

2.4 INTERLOCK 17
2.4.1 Block diagram 17
2.4.2 Electrical specifications 18
2.4.3 Connector pinout 18
2.4.4 Usage example 18

2.5 OPTICAL PWM OUTPUTS 18
2.5.1 Block diagram 18
2.5.2 Safety 19
2.5.3 Configuring the modulation 19
2.5.4 Optical specifications 19
2.5.5 Connector type 19

2.6 GENERAL-PURPOSE INPUTS (GPI) 19
2.6.1 Block diagram 19
2.6.2 Electrical specifications 19
2.6.3 Connector pinout 20

2.7 GENERAL-PURPOSE OUTPUTS (GPO) 20
2.7.1 Block diagram 20
2.7.2 Electrical specifications 20
2.7.3 Connector pinout 20

2.8 CONTROLLER AREA NETWORK (CAN) 20
2.8.1 Electrical specifications 21
2.8.2 Block diagram 21
2.8.3 Connector pinout 21

2.9 ETHERNET 21

PROGRAMMING, DEBUGGING
AND MONITORING
INTERFACES 23

3.1 DSP JTAG 23

3.2 BACK PANEL USB CONSOLE 23

3.3 MONITORING 23
3.3.1 Front and back panel indicators 23
3.3.2 DAC interface 24
3.3.3 Datalogging using a USB key 24
3.3.4 Web interface 24

SOFTWARE ARCHITECTURE
AND OPERATING SYSTEM 25

4.1 SOFTWARE ARCHITECTURE 25
4.1.1 Driver Layer 25
4.1.2 Core Layer 25
4.1.3 User Layer 26

4.2 BASIC PRINCIPLES OF OPERATION 26
4.2.1 Safety mechanisms 27
4.2.2 Interrupts and sampled operation 28

PROGRAMMING AND
CONTROL SOFTWARE ON THE
PC 31

5.1 PROGRAMMING IN C/C++ 31

5.2 PROGRAMMING USING SIMULINK 31
5.2.1 Prerequisites 31
5.2.2 Getting started 31
5.2.3 Main concepts 32
5.2.4 Simulation 33
5.2.5 Automated Code Generation 34
5.2.6 Common issues using simulink 35
5.2.7 Correspondance of API to library blocks 35

5.3 BOOMBOX CONTROL 36
5.3.1 Basic principles 37
5.3.2 Main Controls 37
5.3.3 Analog input configurator 38
5.3.4 Debugging 38
5.3.5 Datalogging and generation of Transients 39

PERIPHERAL DRIVERS 41

6.1 ANALOG DATA ACQUISITION SYSTEM (ADC)
 41
6.1.1 Typical workflow 41
6.1.2 Configuring the data acquisition system 42
6.1.3 Configuring the Sampling clock 42
6.1.4 Retrieving converted measurements 42

6.2 PULSE-WIDTH MODULATION SYSTEM
(PWM) 43
6.2.1 Basic principle of operation 43
6.2.2 Generated PWM patterns 44
6.2.3 Interrupt clocks 46
6.2.4 Synchronization of frequency generators 46
6.2.5 Typical workflow 46
6.2.6 Configuring the frequency generators 47
6.2.7 Configuring the PWM channels 47
6.2.8 Activating the PWM channel 48
6.2.9 Updating the duty-cycle 48
6.2.10 Updating the configuration inside the FPGA 48
6.2.11 Enabling the outputs 48

6.3 ADVANCED PWM MODES 49
6.3.1 Modulators with single PWM output 49
6.3.2 Modulators with PWM and Active outputs 49
6.3.3 Direct access to optical outputs 50

6.4 GENERAL-PURPOSE INPUTS (GPI) 51

6.5 GENERAL-PURPOSE OUTPUTS (GPO) 51

6.6 INTERRUPT SOURCE SELECTION (IRQ) 52
6.6.1 Basic principle of operation 52
6.6.2 Registering interrupts 52

6.7 DIGITAL TO ANALOG CONVERTER (DAC) 53

6.8 USER LED 53

6.9 INCREMENTAL ENCODER INPUT 54
6.9.1 Basic principle of operation 54
6.9.2 Configuring a decoder module 55
6.9.3 Accessing the counter value 55

SOFTWARE LICENSE VERSIONS
 57

7.1 INSTALLING THE LICENSE FILE 57

7.2 SOFTWARE PACKAGES 57

7.3 LITE VERSION LIMITATIONS 57

7.4 EXPERT VERSION FEATURES 58
7.4.1 Stacking several BoomBoxes 58
7.4.2 principles of operation 60
7.4.3 Advanced Sampling options 62

9

Introduction

Chapter 1

THE BOOMBOX

Abstract — This chapter is an introduction to the BoomBox control platform. It provides a
basic overview of the capabilities of the instrument. It is recommended to read this chap-
ter first, as it introduces the terminology used in the rest of this document.

Keywords — Control scheme, Regulator, Interfaces, Safety, Versatility, Modularity

1.1 INTRODUCTION
The BoomBox is a new kind of modular control platform, which is tailored for the devel-
opment of power electronic systems in R&D environments. When compared to existing
Rapid Prototyping Systems (RPS), the presented system features similar flexibility, but
superior performance and usability at lower cost.

The BoomBox clearly distinguishes itself by its extensive signal conditioning, specifically
tailored for power electronic applications. When compared to most general-purpose
control systems, faster implementation time and better signal integrity are guaranteed.

With a complete set of 100% tested software libraries, a sturdy 19” rackmount enclosure
and several years of experience spent in the hands of users, the BoomBox control plat-
form is surely the ultimate tool for the development of power electronic systems.

1.2 BLOCK DIAGRAM
In the block diagram of a typical control scheme, the only parts that are left up to the user
to develop are the application-specific circuit and the accompanying regulation. All the
other components of the control loop are embedded in the BoomBox, helping the user
to quickly develop a safe working prototype of the intended application circuit.

User Ref.

Data log.

V A

Regulat. Modulat.

Application

Sensors

Switches

LPF

Digital Analog

Prog. Limits

W
ire

s

ADC

BoomBox

Fig. 1. Block diagram of the control scheme using the BoomBox.

10

The BoomBox

1.3 CAPABILITIES

1.3.1 INTERFACES
In power electronic applications, the users are often forced to create application-spe-
cific interfaces between the control and power parts in order to guarantee proper signal
integrity and galvanic isolation.

The BoomBox relies on two key concepts in order to speed up the development without
any trade-off on safety : isolated fiber optic PWM outputs and versatile analog frontends
that fit in with almost any sensor.

Additionally, a variety of digital communication interfaces allow the integration of Boom-
Box-controlled systems in a wide variety of industrial and development environments.

1.3.2 SAFETY
One of the key features of the BoomBox is the ability to block the entire application in
case of inappropriate operation, which may be caused by an improper behavior of the
controller, an unexpected event, a damaged device, etc. In such a way, the BoomBox guar-
antees the physical integrity of both the user and the application at all times.

In any case, the user can set specific limits that will be used to block all gating signals
when an overvalue is detected. The crucial point in this protection mechanism is that it
is completely software-independent, meaning that it is always operational, whatever faulty
behavior the DSP or the FPGA may start having. Fig. 2 shows a typical oscillogram of this
safety mechanism :

FAULT

High limit

Low limit

M
ea

su
re

m
en

t

PWMH

PWML

Fig. 2. Operating principle of the fault detection mechanism and the protective measures.

Whenever a value larger than the upper limit (or smaller than the lower limit) is detected,
a fault flag is raised and latched, blocking all firing signals to their inactive state. The error
remains flagged as long as the user doesn’t acknowledge the fault.

11

Controls and Connectors

1.4 CONTROLS AND CONNECTORS

1.4.1 FRONT PANEL

A0 A1 A2 A3

USBETHERNET CONFIG. & STATUS

0/8 1/9 2/10 3/11 4/12 5/13

D0 D1 D2 D3 D4 D5 D6 D7

H

L

6/14 7/15

H

L

H

L

H

L

H

L

H

L

H

L

H

L

MODULINK™ INPUTS

CORE SYNC USER

BoomBox
• • • • • • • • • • •

RUN
IN

HIB
.

FA
ULT

M
AST

ER
SL

AVE
ER

R.
G: Y: R:

1 2 3 4 5 6 7 8

Fig. 3. Front panel view of the BoomBox.

The front panel is composed of the following elements :

1) Ethernet port
2) USB type B device port
3) Rotary and push button
4) LCD screen
5) System and user LEDs
6) SMA analog outputs
7) ModuLink analog inputs
8) Digital fiber-optic PWM outputs

1.4.2 BACK PANEL
DIGITAL IN DIGITAL OUT

Optocoupled (max. 25V) 5V logic (max. 15mA)
INTERLOCK JTAG

CONSOLE

ACT. EXT. INTERFACE
LINK

CAN CAN

EXT. FAULT 5V
INTERLOCKGND

110-230VAC / 50-60 HzON / OFF

1 2 3 4 6 7 8 9 10 11 125

Fig. 4. Back panel view of the BoomBox.

The back panel is composed of the following elements :

1) AC mains switch
2) AC mains socket (IEC 60320 C14)
3) Fan outlets
4) Isolated general-purpose inputs connector
5) Isolated general-purpose outputs connector
6) External fault LED
7) Interlock connector
8) JTAG debugging interface
9) USB type A console port
10) Console communication status LEDs
11) External interface connectors
12) CAN connectors

12

The BoomBox

13

Features and capabilities

Chapter 2

INPUT / OUTPUT INTERFACES

Abstract — This chapter describes in detail the hardware aspects related to the various
analog and digital interfaces of the BoomBox.

Keywords — Analog input, Analog output, Safety limits, Low-pass filter, Analog stage, Analog
gain, Front-panel configuration, Interlock, Fiber-optic, Optical, PWM, GPI, GPO, CAN

2.1 FEATURES AND CAPABILITIES
Here are the analog interfaces of the BoomBox, along with their capabilities :

» 16 analog inputs featuring :

 » Selectable differential high impedance or single-ended low impedance providing
compatibility with a broad range of industrial sensors.

 » Programmable analog gain ensuring an optimal use of the ADC full scale.
 » Programmable low-pass filter
 » Programmable software-independent high and low safety limits
 » 200 kHz analog bandwidth, 150 kHz maximum sampling frequency
 » ModuLink connectivity
 » Standard low-cost shielded connector and cabling for best noise immunity
 » Power supply for sensors

» 4 analog outputs featuring :

 » 200 kHz analog bandwidth
 » Real-time monitoring and debugging

2.2 ANALOG INPUTS

2.2.1 BASIC PRINCIPLE OF OPERATION
The equivalent schematic of the complete data acquisition chain is depicted in Fig. 5. All
channels are stricly identical. Each channel consists of two parts :

» A hardware part, which contains the input resistor, a programmable-gain amplifier
(PGA), a low-pass filter (LPF) and the analog-to-digital converter (ADC).

» A software part, implemented in the DSP, that transforms the digitally-converted mea-
surement into a meaningful quantity that can be easily manipulated : voltage in Volts,
temperature in Celcius, pressure in Pascals, etc.). This transformation is done by the
driver layer.

The present chapter deals with the hardware part and explains how to configure the ana-
log input chain. More information on how to properly use the software part is given in
section “6.1 Analog data acquisition system (ADC)”, page 41.

14

Input / output interfaces

2.2.2 BLOCK DIAGRAM

PGA

Lim. High

Lim. Low

-
+

+
-

A
D f=ax+b

U

U U
IN

ADC CONV �oat_in
100 Ω

Overvalue

min -10 V

min -10 V min -32768 min -3.4e38
max +10 V

max +10 V max +32767 max +3.4e38

LPF

IIN
min -50 mA
max +50 mA

gain
frequency

gaino�set
low impedance

3 kΩ

Fig. 5. Block diagram of each of the analog inputs.

2.2.3 ELECTRICAL SPECIFICATIONS
Input impedance 100 Ω or 3 kΩ (user-configurable)

Low-pass filter none or Ffilt = [500 Hz .. 50 kHz] (user-configurable)

Sampling frequency 0 Hz .. 150 kHz (user-configurable)

Sampling to IRQ delay 4 μs, independently of number of channels used

Resolution 16 bits

Measurement range ± 1.25 V , ± 2.5 V , ± 5 V ,± 10 V (user-configurable)

Safety Independent limits for each channel that trigger emergency shut-down.
User-configurable comparison level VL+ ,VL- = [-10.0 V .. 10.0 V]

Sensor power supply ± 15 V, 100 mA

Overvalue detection delay < 4 μs (threshold crossing to optical outputs inhibited)

2.2.4 CONFIGURABLE INPUT IMPEDANCE
Two input configurations are available. A 3 kΩ differential input or a single-ended 100 Ω
input. The latter is typically intended to be used with current output sensors, such as
LEMs. Each input can be individually configured from the “Analog inputs” menu in the
front panel user interface. By choosing “Low impedance : YES”, a 100 Ω resistor is switched
across the input and the negative input is grounded.

2.2.5 CONFIGURABLE GAIN
For each channel, the hardware gain should be defined such that the voltage UADC fully
exploits the input voltage range of the analog-to-digital converter. It is defined by the
relation :

UADC = gain · UIN

Where UIN is :

» The voltage provided by the sensor if its output stage behaves as a voltage source.
» UIN = 100 · IIN if the output stage of the sensor behaves as a current source. In this

case, IIN is the current provided by the sensor.

The possible hardware gains are shown in Table 1 :

Gain in the pass-band 1 V/V 2 V/V 4 V/V 8 V/V

Table 1. Possible hardware gains that can be programmed in the PGA stage of each analog input.

15

Analog inputs

2.2.6 CONFIGURABLE LOW-PASS FILTER
A fifth-order programmable filter can be activated on each analog input channel. The cut-
off frequencies of this filter can be set individually and independently for each input chan-
nel. A given frequency is considered to be in the stop band if it is larger than 8 times the
selected cut-off frequency. The frequency response of the low-pass filter is given in Fig. 6.

80 db

f [Hz]

Gain [db]

fc 8 fc

Fig. 6. Frequency response of the low-pass filter.

The cut-off frequencies can be freely adjusted among the values given in Table 2 :

0.5 kHz 1 kHz 1.6 kHz 2.5 kHz 4 kHz 6.4 kHz 8 kHz 10 kHz 16 kHz 20 kHz 32 kHz 40 kHz

Table 2. Possible cut-off frequencies that can be programmed in the LPF stage of each analog input.

2.2.7 CONFIGURABLE SAFETY LIMITS
The user can define two safety limits for each input channel : a high and a low one. If any
of these limits is exceeded while the application is running, a hardware fault flag is trig-
gered, leading to the blocking of the entire application. In order to configure this protec-
tive feature, two parameters must be configured for each input channel :

» Limit high defines the highest allowed value for UADC

» Limit low defines the lowest allowed value for UADC

These values can be freely set from -10.0 V to 10.0 V, by steps of 100 mV. The comparison
voltage is the output of the programmable gain. This means the configuration of the PGA
must be taken into account when setting the safety limits.

When a given limit is met or exceeded, the orange LED of the corresponding channel
lights up and the CORE LED on the front panel turns red. The user can then access the
fault list by selecting the “List hardware faults” option in the “Faults” menu of the front
panel user interface. The fault can be acknowledged by selecting the “Acknowledge
input faults” option.

Caution

Before acknowledging the fault, make sure that the application has returned to a safe state.

2.2.8 SAVING AND RESTORING FRONT-END CONFIGURATIONS
This feature is easily accessible from the frontpanel. It allows to save and restore the com-
plete configuration of the analog inputs, to and from a USB key. This way, multiple users
can concurrently use the same BoomBox, while having different personal configurations.

16

Input / output interfaces

» When selecting the “Backup config.” option in the frontpanel user interface, the cur-
rent frontpanel configuration is saved in the folder called “imperix” on the USB key. The
filename format is “frontpanel#.bbox”, where # is a number that gets incremented each
time a new configuration is saved.

» When selecting the “Restore config.” option, the last “frontpanel#.bbox” file is read and
the parameters it contains are applied to the frontpanel configuration.

» When selecting the “Reset config.” option, only the current frontpanel configuration
is reset, without touching any of the files on the USB key.

2.2.9 GETTING ADC MEASUREMENTS
Getting ADC measurements is only a matter of calling the correct function from the DSP
code. More information on the usage of the Application Programming Interface (API) can
be found in section “6.1 Analog data acquisition system (ADC)”, page 41.

2.2.10 ANALOG INPUT CONNECTOR PINOUT AND CABLE
The analog input connector is a standard low-cost 8P8C (8 positions, 8 contacts) shielded
modular connector (RJ45). The recommended cabling to be used with this connector
is cat. 5E 8-conductor twisted pair shielded cable. The following table gives the pin/pair
assignment. The color standard used for the wiring pattern is the same as the one defined
by the widespread industry standard T568B.

Pin Pair Wire Color Description

1 2 1 orange stripe +15 V

2 2 2 orange solid +15 V

3 3 1 green stripe 0 V

4 1 2 blue solid Positive input / current input

5 1 1 blue stripe Negative input / ground

6 3 2 green solid 0 V

7 4 1 brown stripe -15 V

8 4 2 brown solid -15 V

Table 3. Analog input cable pin/pair assignments (right to left when facing BoomBox front panel).

2.2.11 USAGE EXAMPLE
The ± 15 V supplied through the analog input cable enables the BoomBox to power sen-
sors such as LEM sensors up to a maximum continuous current of 100 mA.

100ΩIINLEM
LA-25P

-15 V

+15 V CH0..15

IMES UIN

Fig. 7. Block diagram of the connection of a LEM LA-25P current sensor to a ModuLink analog input.

2.2.12 ABSOLUTE MAXIMUM RATINGS
3 kΩ differential input Max. input common-mode voltage ± 10 V

Max. input differential voltage ± 10 V p-p

100 Ω single-ended input Max. input current 50 mA RMS

± 15 V sensor supply Max. output current 100 mA (short-circuit protected)

17

Analog outputs

2.3 ANALOG OUTPUTS
The four analog outputs available on the front panel (SMA connectors) provide a tool for
real-time monitoring and debugging from the DSP application code.

Note :

In order to directly connect the analog outputs to an oscilloscope, an SMA-to-BNC adapter
is usually required. Reference 744-1249-ND by Digikey is a possible option.

2.3.1 BLOCK DIAGRAM

D
AUCONV�oat_out

min 0min -5.0
max +65535max +5.0

UOUT

min -5 V
max +5 V

f

Fig. 8. Block diagram of each of the analog outputs.

2.3.2 ELECTRICAL SPECIFICATIONS
Output impedance 37 Ω

Update frequency 0 Hz .. 100 kHz (user-configurable)

Resolution 16 bits

Output range ± 5 V

2.3.3 SETTING THE OUTPUT VOLTAGE
Setting the output voltage is only a matter of calling the correct function from the DSP.
The output voltage is then updated in real-time. More information on the usage of the
API can be found in section “6.7 Digital to analog converter (DAC)”, page 53.

2.4 INTERLOCK
The interlock functionality provides the most basic safety protection, in the form of a life
signal. Whenever this signal is not present at the BoomBox input, the fault flag is triggered
and the application is safely stopped.

2.4.1 BLOCK DIAGRAM

GND

UINTLCK
min 0 V
max +25 V

FAULT
IIN

min 0 mA
max +12 mA

2.2 kΩ

TPL281-4

5V0

1 kΩ

GND

5V-ISO

Fig. 9. Block diagram of the interlock input circuit.

18

Input / output interfaces

2.4.2 ELECTRICAL SPECIFICATIONS
Input impedance 2.2 kΩ

High logic level range 5 V .. 25 V

Transmission delay < 5 μs (interlock rising edge to nFAULT falling edge, IDIODE = 3 mA)

2.4.3 CONNECTOR PINOUT
The connector used for the interlock line is a 3 position 3.5 mm pin pitch connector from
the Weidmüller Omnimate SL-SMT series. An interlock bypass connector is included with
the BoomBox, but any application specific circuit can be combined with the interlock
functionality to provide an additional layer of safety.

Note :

Any compatible female mating connector can be used, such as Weidmüller nb. 1615680000,
available by Digikey 281-1055-ND.

The pinout of the connector must be as shown in Table 4 :
Pin Description

1 0 V

2 Interlock input

3 5 V

Table 4. Interlock pin assignments (left to right when facing BoomBox back panel).

2.4.4 USAGE EXAMPLE
The interlock input of the BoomBox can be typically used to connect an emergency stop
button, as suggested in Fig. 10 :

5V
STOP

Interlock
inputIN

Fig. 10. Block diagram of the connection of a normally-closed emergency switch to the interlock line.

2.5 OPTICAL PWM OUTPUTS
The optical pulse-width modulated (PWM) outputs, along with their modulators imple-
mented in FPGA, are used to drive the gates of the power switches.

2.5.1 BLOCK DIAGRAM

FAULT
PWM

MOD
FREQ
GEN

ENABLEOUT
ACTIVE H / L outputs of a PWM pair

period modulation

parameters

Fig. 11. Block diagram of each pair of fiber-optic PWM outputs.

19

General-purpose inputs (GPI)

2.5.2 SAFETY
A number of conditions must be met for a valid modulation to be present at the output
of the optical transceiver :

» The channel must be activated by the user code.
» The core of the BoomBox must be in OPERATING state, enabling the outputs.
» No fault must be present.
More information on the BoomBox core and the safety mechanisms can be found in sec-
tion “Software architecture and operating system”, page 25.

2.5.3 CONFIGURING THE MODULATION
The configuration of the modulation is done by the user in the DSP code. More infor-
mation on how to use the corresponding API can be found in section “6.2 Pulse-width
modulation system (PWM)”, page 43.

2.5.4 OPTICAL SPECIFICATIONS
Wavelength 650 nm

Logic type Active high

Temporal resolution 33.3 ns

2.5.5 CONNECTOR TYPE
The transceiver used in the BoomBox is the industry-standard HFBR transceiver from
Avago (manufacturer part num. HFBR-1528Z). This transceiver includes the Avago Versa-
tile Link connector for the fiber. Instructions to properly crimp the correct type of plastic
optical fiber (POF) to the plastic fiber connector can be found in Avago application note
1035. The recommended receiver is the Avago part num. HFBR-2528Z.

2.6 GENERAL-PURPOSE INPUTS (GPI)
The general-purpose inputs enable the user to combine any external digital hardware
component with a system controlled using a BoomBox. They also serve as inputs for the
incremental encoder interface (see pinout in table below).

2.6.1 BLOCK DIAGRAM

GPI[0..7]

x8

UGPI
min 0 V
max +25 V

IIN

min 0 mA
max +12 mA

2.2 kΩ

TPL281-4

3V3

2.2 kΩ

GND

Fig. 12. Block diagram of general-purpose inputs. This shows the optional galvanic isolation.

2.6.2 ELECTRICAL SPECIFICATIONS
Input impedance 2.2 kΩ

High logic level range 5 V .. 25 V

20

Input / output interfaces

2.6.3 CONNECTOR PINOUT
The connector used is a standard DE-9 shielded connector with the following pinout :

Pin Description Incremental Encoder

1 GPI0 A1

2 GPI1 B1

3 GPI2 Z1

4 GPI3

5 GPI4

Pin Description Incremental Encoder

6 GPI5 A2 or A1

7 GPI6 B2 or B1

8 GPI7 Z2 or Z1

9 0V

Table 5. GPI pin assignments.

2.7 GENERAL-PURPOSE OUTPUTS (GPO)
The general-purpose outputs enable the user to combine any external digital hardware
component with a system controlled using a BoomBox.

Note :

These outputs are intended to control low-speed peripherals and are not suited for modu-
lation output purposes.

2.7.1 BLOCK DIAGRAM

UGPO
min 0 V
max +5 V

GPO[0..7]

x8

Fig. 13. Block diagram of general-purpose outputs.

2.7.2 ELECTRICAL SPECIFICATIONS
High logic level 5 V

Max. output current 15 mA

2.7.3 CONNECTOR PINOUT
The connector used is a standard DE-9 connector with the following pinout :

Pin Description

1 GPO0

2 GPO1

3 GPO2

4 GPO3

5 GPO4

Pin Description

6 GPO5

7 GPO6

8 GPO7

9 0V

Table 6. GPO pin assignments.

2.8 CONTROLLER AREA NETWORK (CAN)
The Controller Area Network (CAN) interfaces located at the back panel of the Boom-
Box allow communication with other CAN-enabled devices such as sensors or industrial

21

Ethernet

controllers as well as other BoomBoxes. Both CAN connectors of the BoomBox are tied
together, offering a convenient way to daisy-chain CAN devices.

2.8.1 ELECTRICAL SPECIFICATIONS
Impedance 120 Ω

Input high logic level range 5 V .. 20 V

Output high logic level 5 V

Max. voltage on signal lines - 27 V .. + 40 V

2.8.2 BLOCK DIAGRAM

TX

RX

TJA1041
CAN
transceiver

DSP
CAN
module

120 Ω
RJ45

RJ45

To previous device

To next device

Fig. 14. Block diagram of the Controller Area Network peripheral.

2.8.3 CONNECTOR PINOUT
The connectors used are standard low-cost 8P8C (8 position 8 contact) shielded modu-
lar connector (RJ45). The recommended cabling to be used with this connector is cat. 5E
8-conductor twisted pair shielded cable. The following table gives the pin/pair assign-
ment definition. The color standard used for the wiring pattern is the same as the one
defined by the widespread industry standard T568B.

Pin Pair Wire Color Description

1 2 1 orange stripe CANH

2 2 2 orange solid CANL

3 3 1 green stripe 0 V

4 1 2 blue solid NC

5 1 1 blue stripe NC

6 3 2 green solid 0 V

7 4 1 brown stripe NC

8 4 2 brown solid NC

Table 7. CAN pin/pair assignments (left to right when facing BoomBox back panel).

2.9 ETHERNET
This feature is coming soon.

22

Input / output interfaces

23

DSP JTAG

Chapter 3

PROGRAMMING, DEBUGGING
AND MONITORING INTERFACES

Abstract — This chapter describes the various interfaces that can be used to change the
program running on the BoomBox, debug it and monitor its state.

Keywords — JTAG, USB, Console, Command line, Indicators, LED, Screen, DAC

3.1 DSP JTAG
The back panel JTAG connector allows the connection of a JTAG emulator for debugging
purposes. For example, a Texas Instruments XDS100v2 USB JTAG Emulator can be used
along with Texas Instruments Code Composer Studio IDE to inspect the DSP memory
space, check the program flow and debug the code.

3.2 BACK PANEL USB CONSOLE
The back panel USB interface is a serial to USB link which enables the user to interact with
the BoomBox using its console interface or the BoomBox Control graphical software (see
section 5.3, page 36).

3.3 MONITORING

3.3.1 FRONT AND BACK PANEL INDICATORS

3.3.1.1 USER LED

The state of the USER LED can be controlled from the DSP code using the API described
in section “6.8 User LED”, page 53.

3.3.1.2 SYSTEM LEDS

The CORE LED indicates the status of the BoomBox core :

» Orange means that the BoomBox core is in BLOCKED state. No faults are triggered,
but the outputs are inhibited and the front panel user interface is available for the user
to configure analog input parameters.

» Green means that the BoomBox core is in OPERATING state. In this state, a valid mod-
ulation is present at the ouput of the activated channels. The front panel is locked
because the application is energized and no change of analog input configuration
should be made.

24

Programming, debugging and monitoring interfaces

» Red means that the BoomBox core is in FAULT state. All outputs have been disabled
but the application might still be energized. While applying caution, the user should
make sure the fault is not longer present at the BoomBox inputs. This will allow the
fault to be acknowledged and the core to go back to BLOCKED state. At this point, the
BoomBox can be enabled again to allow the application to be smoothly de-energized.

More information on the BoomBox core and the safety mechanisms can be found in sec-
tion “Software architecture and operating system”, page 25.

The SYNC LED is only used by the expert version of the BoomBox software. It indicates
the status of the synchronization between several BoomBoxes. More information on the
stacking of several BoomBoxes and the use of the expert software can be found in sec-
tion “Expert version features”, page 58.

3.3.1.3 SCREEN

When a fault occurs, the screen shows the fault type, which can be one of the following :

» Hardware : an event external to the DSP has triggered a fault. This can either be one
of the safety limits which has been reached, or an interruption of the interlock line. To
know the details of the fault, the user can press the button to access the “List hard-
ware faults” menu.

» Software : the servicing of an interrupt was excessively long or an arithmetical error
occured.

» User : a user-level function returned an UNSAFE state.

More information on the BoomBox core and the safety mechanisms can be found in sec-
tion “Software architecture and operating system”, page 25.

3.3.2 DAC INTERFACE
The DAC interface provides an analog output that is asynchronously and continually
updated by the FPGA. The user can change the output value by calling the correspond-
ing routine from the DSP code. For more information on the electrical specifications, see
section “2.3 Analog outputs”, page 17. For more information on the API, see section “6.7
Digital to analog converter (DAC)”, page 53.

3.3.3 DATALOGGING USING A USB KEY
This feature is coming soon.

3.3.4 WEB INTERFACE
This feature is coming soon.

25

Software architecture

Chapter 4

SOFTWARE ARCHITECTURE
AND OPERATING SYSTEM

Abstract — This chapter describes the software architecture of the BoomBox operating
system and its inherent safety mechanisms.

Keywords — Software architecture, Driver layer, Core layer, User layer, Safety, Interrupts

4.1 SOFTWARE ARCHITECTURE
The precompiled libraries contained in the base project implement an ultra lightweight
Operating System (OS) that provides :

» A driver layer composed of easy-to-use routines to manage all peripherals.
» A core layer responsible for managing the state of the DSP and the application.
» A user layer that is intended to contain all the routines that are specific to the applica-

tion. This latter layer is not actually implemented, but left available to the user to develop
his own code. The actual implementation is done in the user.h/.c files.

4.1.1 DRIVER LAYER
The driver layer contains several routines that can be divided in the following tasks :

a) Handle the serial communication with the computer and provide a command line
interface to interact with the user through the PC terminal.

b) Provide low-level routines in order to configure the FPGA and communicate with the
logical peripherals. This makes the user’s life easier by allowing to manipulate mean-
ingful variables and guaranteeing the fast operation of repetitive low-level routines.

c) Provide low-level routines in order to program the DSP independently from the
XDS100v2 emulator/programmer and boot-up the BoomBox in standalone mode.

4.1.2 CORE LAYER
The core layer is essentially responsible for :

» Initializing the DSP and all its peripherals.
» Detecting all potential fault flags and triggering the safety mechanisms.
» Ensuring the safe execution of the code in the user layer.

The core layer distinguishes three possible states of operation for the DSP :

» BLOCKED : The BoomBox is running safely but it is currently blocking the application
for safety purposes (the gate signals are inhibited).

» OPERATING : The BoomBox is running safely and the application is working as well.
The gate signals are sent to the application.

26

Software architecture and operating system

» FAULT : A fault flag has been detected and is being processed by the BoomBox. User’s
attention is required. In the meantime, the application is blocked.

4.1.3 USER LAYER
While the core layer focuses on the execution of the DSP, the user layer aims to control the
execution of the application.

This layer is built on the top of the two others. It is intented to contain the application-
specific part of the DSP code. It consists of a template of several routines that the user can
freely edit and complete.

Chapter 6 “Peripheral drivers” contains more information about the basic principle of
operation of the provided driver framework. For more information on how to get started
with the editing of the DSP code, please read the “Quick-Start Guide”.

4.2 BASIC PRINCIPLES OF OPERATION
When using the BoomBox, the following steps are typically made :

1) At startup, it is initially set in BLOCKED state through the CoreInit() routine. This rou-
tines calls UserInit() in order for the user to activate his own initialization procedures.
The complete initialization procedure in depicted in Fig. 15.

2) Although interrupts are already serviced, no gate signal is actually produced until the
user activates the application by sending an “enable” request in the command-line
interface.

3) Once the user executes the “enable” command in the terminal console, PWM gate sig-
nals are physically generated. Consequently, the core state is changed from BLOCKED
to OPERATING and the CORE LED on the front panel turns green, proving that the
BoomBox has changed to its normal mode of operation.

4) At any time, by executing the “disable” command, the user can block the gate sig-
nals. Executing “enable” subsequently reactivates the PWM generation as well. Both
“enable” and “disable” commands can be executed at any time and as often as desired.

5) In case of a fault, the BoomBox immediately switches to its FAULT mode of operation,
which also prevents gate signals to be outputted.

Fig. 16 presents the complete core state machine with its states and transitions :

27

Basic principles of operation

Core Layer User LayerDriver Layer

main()
main.c

CoreInit()
core.c

CoreBackground()

CoreInit()

CommandLineInit()

UserInit()

Sets sysclock, con�gures interrupts,
XINTF, watchdog and GPIOmux.

UserInit()
user.c

Here user inits I/O for its application,
chooses its interrupt sources and inits the
local variables and timers.
RETURNS :
SAFE if no error
UNSAFE if errors

CommandLineInit()
cli_mapper.c

cli_init()

Here the C I/O libraries are redirected to
the serial interface SCIb if device is in
standalone mode. See scib_driver.c.

RETURNS :
void

RETURNS :
void

CoreBackground()
core.c

CommandLineProcess()

Service the watchdog counter.

RETURNS :
void

Init of CLI parsing engine. See cli.c

CommandLineProcess()
cli_mapper.c

cli_engine(string)

Here data is fetched from bu�er and
preprocessed. Once line-break detected,
command line is built.

RETURNS :
void

Sends the command to parser engine.

En
tr

y
po

in
t

Fig. 15. Initialization process of the BoomBox.

CoreBackground()

CoreBackground()

CoreBackground()

CoreStart()

UserInit()
CoreInit()

OPERATING

FAULT

BLOCKED

User Layer

Entry point

Core Layer

UserInterrupt1()
UserInterrupt2()

enable

UserInterrupt1()
UserInterrupt2()

UserInterrupt1()
UserInterrupt2()

disable

fault

user ack.

CoreStop()

UserError()
CoreError()

CoreRecover()

Fig. 16. Finite State Machine of the core layer of the BoomBox.

4.2.1 SAFETY MECHANISMS
In order to protect the user, the application and the BoomBox itself, software-independent
safety mecanisms are implemented. They lead to the blocking of the entire application
in case of overvalues. Besides, in addition to these basic mechanisms, the DSP may also
trigger the blocking of the application in order to protect it against its own hehaviour,
when inappropriate.

In consequence, three different error sources can trigger the blocking of the application :

28

Software architecture and operating system

» Hardware error : corresponds to having an analog measurement exceeding one of
the corresponding thresholds on one of the analog input channels. In such a case, the
front panel displays which channel was responsible for activating the fault flag.

» Software error : corresponds to a potentially unsafe operation of the DSP. The core
layer is responsible for triggering such an error flag. The possible causes are either a
division by zero, a stack overflow or an exessive execution time in UserInterrupt1()
or UserInterrupt2().

» User error : corresponds to a request from the user himself to enter into the FAULT
mode of operation. Such error can be triggered by returning an UNSAFE status from
any of the user-leve routines. By doing so, the user decides – on purpose – that the code
execution is becoming unsafe and that the safety mechanisms must be activated.

As shown in Fig. 17, if one of the events described above is triggered, the CoreError() rou-
tine is called and the core state is changed to FAULT. In this state, all PWM modules are
blocked, a warning message is displayed in the console, the CORE LED on the front panel
turns red and the UserError() function is called. At the end of the execution of UserEr-
ror(), the error is cleared and the BoomBox returns in the BLOCKED state.

Warning :

When this procedure occurs, the application has already been blocked by the IO system
of the BoomBox in a software-independant manner. This software procedure only makes
the DSP code aware of the fault, so that the application can be safely shut down and/or
properly restarted.

Driver Layer Core Layer User Layer

Block all PWMs
Display warning on CLI

Wait for user to ack. Hardware fault ?

Hardware fault User-de�ned faultCore fault or software crash

NO

YES

CoreError()
core.c

Fault cleared

UserError()
user.c

CoreRecover()
core.c

Fig. 17. Flow chart of the error management process.

4.2.2 INTERRUPTS AND SAMPLED OPERATION
As for any digital control system, the BoomBox features a sampled time operation. There-
fore, it relies on the use of interrupts in order to schedule repetitive calls to control routines.

» An interrupt is an event interrupting the processor’s execution, forcing it to switch to
another task requiring immediate attention. In discrete-time controllers, interrupts are
used to trigger the execution of control routines at precise time intervals. Typically,
these interrupts are generated either by timers or by hardware events.

29

Basic principles of operation

» An Interrupt Service Routine (ISR) is a software routine executed at the occurrence of an
interrupt. In discrete-time controllers, its purpose is to execute the control tasks related
to the corresponding interrupt.

» The process of associating an interrupt with an ISR is called “mapping an interrupt”.
Detailed information on how to properly register and configure the user-level Interrupt
Service Routines is given in section “6.6 Interrupt source selection (IRQ)”, page 52.

30

Software architecture and operating system

31

Programming in C/C++

Chapter 5

PROGRAMMING AND CONTROL
SOFTWARE ON THE PC

Abstract — This chapter describes the use of the PC software to code and program the
BoomBox and interact with it once it is running.

Keywords — Simulink, Automated Code Generation, C++, Code Composer Studio, CCS,
command line, CLI, Tera Term, BoomBox Control, Automated Code Generation, ACG, Simu-
link, graphical programming, Simulink toolbox, BoomBox block library

5.1 PROGRAMMING IN C/C++
Coding in C++ is typically done using Texas Instruments’ integrated development envi-
ronment called Code Composer Studio. For information on how to install Code Com-
poser Studio and the required libraries and import a template project, please consult the
BoomBox Quick Start Guide.

Documentation on the routines used to access the BoomBox’s peripherals can be found
in chapter “Peripheral drivers”, page 41.

5.2 PROGRAMMING USING SIMULINK

5.2.1 PREREQUISITES
To use the BoomBox ACG Simulink package, the following software is required

» MATLAB r2015a or later, with the following additions
 » Simulink
 » Simulink Coder
 » Embedded Coder

Additionally, to properly open and execute our model examples, the following software
may be required :

» PLECS Viewer v. 4 or later. This can be obtained free-of-charge by downloading the
installer for the regular PLECS Blockset and executing it without a license.

5.2.2 GETTING STARTED
To start building a model using the Simulink BoomBox ACG package, the installer must
be executed first. There, a license file is needed, which can be dowloaded from the cus-
tomer area on imperix’s website :

http ://imperix.ch/support/customer-area

http://imperix.ch/support/customer-area

32

Programming and control software on the PC

If no license is available at the time of the first installation, it remains possible to complete
the installation successfully and to execute simulations, but the automated code genera-
tion process will not be available.

Note :

In order to freely evaluate the automated code generation process, trial licenses can be
requested by simply writing to sales@imperix.ch.

With the package installed, a file called Bbox_template.slx is available in the MATLAB
folder in My Documents. This file should provide a starting point for all BoomBox com-
patible Simulink models.

Note :

When starting a new project, it is absolutely necesarry to start either by the template file or
code examples that are available on imperix.ch. Starting from a blank file would not work.

Note :

Several fully-functional examples can be found on imperix’s website at the following URL :
http ://www.imperix.ch/category/code-examples

5.2.3 MAIN CONCEPTS
The provided template file provides a basic model canvas consisting of a subsystem
where to place the simulated model of the converter (Plant_model) and another sub-
system to place the model of the controller (Closed_loop_control). The latter contains
the only block that is absolutely mandatory for a BoomBox compatible file : the Config-
uration block :

Fig. 18. Configuration block.

By double-clicking on this block, it is possible to set one of two execution modes :

» Simulation : used for simulating the circuit on the computer (off-line)
» Automated Code Generation : used for generating executable code and download-

ing it onto the BoomBox for real-time execution.

Additionally, this block sets the switching and control frequency, the simulation time step
and other timing parameters. Further description of the available options can be found
in the following paragraphs.

The Configuration block has two outputs that can be seen as trigger events for signal
sampling and modulation. So that timing is correctly provided to the ADC and PWM
blocks, their respective clock inputs have to be wired to the corresponding outputs of
the Configuration block, as seen in Fig. 20.

Warning :

Attention must be paid to wire the upper signal to the clock input of ADC blocks and the
lower signal to the clock input to clock input of PWM blocks. Failure in doing so would lead
to incorrect simulation results.

http://imperix.ch/category/code-examples

33

Programming using Simulink

Fig. 19. Selecting the model execution mode in the Configuration block mask.

The following parameters in the Configuration block mask have an influence in simula-
tion mode :

» Simulation step size : this defines the step size of the simulated signals coming out
of the BoomBox PWM blocks, and ideally the plant simulation. For better simulation
performance, the toolbox thais used used to simulate the power electronics behavior
(e.g. PLECS or SimPowerSystems) should be set to an automatic step size or forced to
use the TSAMPLE variable.

» Switching frequency : this defines the carrier frequency used to generate the simu-
lated PWM signals.

» Relative phase : phase difference between the ADC and PWM simulation clocks (see
more details on how to wire those clocks below).

Fig. 20. Connection of the ADC and PWM clocks necessary to provide timing in simulation mode.

5.2.4 SIMULATION
To simulate, simply set the model in Simulation mode as described above and press the
Run button :

In simulation mode, the blocks placed in the Plant_model subsystem are executed to
simulate the converter hardware. On the control side, blocks from the BoomBox block-
set provide a simulation model of the corresponding BoomBox peripheral. For example,

34

Programming and control software on the PC

these blocks are ensuring that the real-world variables coming from the converter simu-
lation are sampled at the correct instant.

Note :

The simulation of a model configured in Automated Code Generation mode would lead
to unexpected results.

5.2.5 AUTOMATED CODE GENERATION
To prepare a model to generate code, set the model execution mode in Automated Code
Generation within the Configuration block properties, as depicted in Fig. 19.

In code generation mode, the Plant_model subsystem is ignored and the Closed_loop_
control is used to generate code and execute it on the BoomBox control platform.

In order to launch the Automated Code Generation process, simply press the Build-and
-run button :

The process usually takes up to 20 seconds. It performs several actions such as compila-
tion, linking and code upload to the BoomBox control platform. Once the generated code
is running in the BoomBox, its behavior can be monitored using the BoomBox Control
graphical software. Please refer to section 5.3 for BoomBox Control usage.

Note :

For the code to load, the BoomBox must be powered and connected to the PC using the
XDS100 JTAG adapter. Furthermore, to enable the BoomBox, control parameters and
monitor the running code using BoomBox Control, the CONSOLE USB connection must
be connected as well.

To make a signal available to the user through BoomBox Control, connect it to a Probe
block. The signal can then be added to the watch list in the Debugging tab by typing
its name.

Fig. 21. Probe block.

For parameters that need to be modified on-the-fly, place a Tunable parameter block.
Similarly to the Probe block, it is possible to add it to the watch list and alter its value by
double-clicking its name.

Fig. 22. Tunable parameter and Data Store Read blocks.

It is also possible to use its value multiple times in the Simulink model using a Data Store
Read block with the same variable name (from the standard Simulink library).

35

Programming using Simulink

5.2.6 COMMON ISSUES USING SIMULINK

5.2.6.1 SIGNAL TYPE

Sometimes, some blocks require a specific data type to operate, which might create some
incompatibilities, leading to error messages similar to the following :

Error example :

Data type mismatch. Input port 1 of ‘Bbox_template/Closed_loop_control/PWM’ expects
a signal of data type ‘single’. However, it is driven by a signal of data type ‘double’.

To solve this issue, use a Data Type Conversion block set to output the correct type, in
this case, single :

Fig. 23. Data Type Conversion block.

5.2.6.2 SAMPLE TIME

Blocks with continuous sample times are not supported, producing errors such as :

Error :

Block ‘Bbox_template/Closed_loop_control/Step’ uses continuous time, which is not sup-
ported with the current configuration.

In other cases, sample time mismatches can happen such as :

Error :

Sample time mismatch. Sample time (2.5e-05) of signal at input port 1 of ‘test/Closed_loop_
control/PWM1/simulation/Triangle/S//H’ does not match the sample time (5e-05) specified
for this signal by ‘test/Closed_loop_control/PWM1/simulation/Triangle/Signal Specification’.
Consider using a Rate Transition block to resolve the mismatch.

In both those cases, it is worth checking the Sample time parameter of the blocks in
the signal path and try setting them to -1 (inherited). If needed, the sample time can be
set to SWPERIOD, which corresponds to the switching frequency set in the Configura-
tion block.

To check the sample times graphically, press Ctrl+J to show the sample time color legend.
Essentially, the model of the controller should be uniformly sampled at the switching fre-
quency for the simulation to behave in a similar way as the real-time code.

5.2.6.3 CODE COMPILATION AND SIMULATION ERRORS

Make sure that the model is configured in the mode which corresponds to the wanted
action (Simulation or Code Generation). Configure the model in Simulation mode and
press Run, or set it to Automated Code Generation and use the Build Model button.

5.2.7 CORRESPONDANCE OF API TO LIBRARY BLOCKS
The table below shows the C++ functions that are used in the BoomBox Simulink library,
in which block and in which callback they are called. The callback field can take one of
the following values :

36

Programming and control software on the PC

» Start : this corresponds to calling the function once per instance of the block, at code
initialization (C/C++ equivalent to UserInit()).

» Output : this corresponds to calling the function at each execution of the control
period for each instance of the block (C/C++ equivalent to UserInterrupt1()).

C++ function Simulink block Simulink callback

SetADCAdjustments ADC Start

GetADC ADC Outputs

ConfigPWMChannel PWM Start

SetPWMPhase PWM Start

SetPWMDutyCycle PWM Outputs

ActivatePWMChannel PWM Start

RegisterExt1Interrupt Configuration Start

ConfigSampling Configuration Start

SetFreqGenPeriod Configuration Start

GetGPIbit GPI Outputs

InitAllGPO GPO Start

ForceGPObit GPO Outputs

SetDACVoltage DAC Outputs

SetUserLED LED Outputs

ConfigDECModule DEC Start

GetDECAngle DEC Outputs

Table 8. Correspondance table of C++ API to Simulink block

5.3 BOOMBOX CONTROL
BoomBox Control is a graphical software that enables the user to monitor, control, and
display data from the BoomBox control platform. The program runs on a PC connected
to a BoomBox through its CONSOLE USB connection. It replaces a traditional terminal
software, such as TeraTerm, while providing enhanced functionality.

Fig. 24. BoomBox Control connection selection screen.

37

BoomBox Control

5.3.1 BASIC PRINCIPLES
When BoomBox Control is launched from the Start Menu, the working project folder
must be selected from the disk or a recently used list. The selection of this folder serves
to indicate to BoomBox Control in which folder it should look for the generated code files.

Next, a connection to a BoomBox unit must be established. After choosing the COM port
which corresponds to the target device, the program parses the generated code (from
Simulink or written by hand) to extract the list of variables and their location inside the
DSP’s memory.

5.3.2 MAIN CONTROLS

Fig. 25. BoomBox Control Main Controls tab.

5.3.2.1 BOOMBOX CORE STATUS

The current status of the BoomBox can be changed using the Enable / Disable button.
Likewise, at any time, pressing the Emergency button generates a SOFT error.

More information on the CORE states can be found in §4.2.

5.3.2.2 UPDATING THE FIRMWARE

Updating the firmware can be done using the dedicated button. The file that must be
chosen is the .a00 file in the Debug_BoomBox folder located in the project folder.

Note :

As BoomBox Control is not (yet) a multi-threaded application and the transfer of the firm-
ware used 100% of the communication bandwitdth, the program may apprear to “freeze”
to Windows’s task manager during transfer. This may take up to 20 seconds. BoomBox Con-
trol will nevertheless return to normal operation once the transfer is complete.

38

Programming and control software on the PC

5.3.2.3 CONFIGURING THE DAC OUTPUTS

This feature can be used to send any global variable to one of the analog outputs. The
update of the outputs is done periodically at main control interrupt frequency.

To use this feature, type the name of a variable in one of the four DAC output fields and
press Enter or click on the button immediately on the right of the field. The gain of each
output can be adjusted individually to be able to output the intended values using the
+/- 5V full scale of the DAC.

More information of the analog ouputs can be found in §2.3.

5.3.2.4 COMMAND LINE INTERFACE

The BoomBox command line interface organises commands in different directories. The
user can navigate in this directory structure by typing the directory name to enter a sub-
directory, or .. to go back to the parent directory.

Anywhere in the command line interface, the command <ls> shows which subdirecto-
ries and commands are available in the current working directory.

To find the custom commands defined in the file cli_commands.c, navigate to the /user
directory. For example, our tutorial n°1 code example defines a custom command called
setipv to change a controller set point.

Even though these actions can be more conveniently done using the graphical user inter-
face, the two following fundamental commands are still available :

» enable : enable the PWM outputs that have been activated to produce a modulated
output. Makes the core transition from the BLOCKED to the OPERATING state.

» disable : disable the PWM outputs. Makes the core transition from the OPERATING
to the BLOCKED state.

This command line interface can also be useful to get status updates from the BoomBox,
for example regarding the source of a fault.

5.3.3 ANALOG INPUT CONFIGURATOR
This tab enables the user to load existing Analog frontpanel configuration files (.bbox),
alter them, or create them from scratch. These files can then be loaded on the BoomBox
frontpanel by storing them on a USB drive.

To upload a frontpanel configuration file to the BoomBox, place it on a USB drive in a
folder called imperix. The filename must be of the form frontpanel#.bbox. By choos-
ing “Restore config.” from the frontpanel menu, the BoomBox will read the file with the
highest number (#) starting from 0.

More information on the use of the frontpanel to save and restore configurations from a
USB stick can be found in 2.2.8.

5.3.4 DEBUGGING
This tab provides a way to monitor and alter any global variable during run time. Variables
can be added to the watch list by typing their name in the top field and pressing Enter.

Their current values can then be monitored in real-time in the list below. The user can
also alter a variable’s value by double-clicking on it (see Fig. 26). Additionally, by dragging

39

BoomBox Control

a variable from the watch list and dropping it over the plot below, the variable’s evolu-
tion in time can be viewed.

The maximum update rate of this plot is 10 Hz so it is only suited to slow variables. For fast
phenomena, please use the datalogging feature described below.

Fig. 26. Altering a variable using the BoomBox Control Debugging tab.

5.3.5 DATALOGGING AND GENERATION OF TRANSIENTS

5.3.5.1 DATALOGGING

The datalogging can be used to log up to six variables of type float. These are sampled
periodically at main control interrupt frequency, similarly to the analog outputs.

After configuring the variables and the window length (max. 2048 samples per variable),
the datalogging module can be enabled by pressing the Run/Stop button. This checks
the variable list and locks the configuration. The trigger can then be fired manually by
pressing the Force trigger button or configured using the associated section the same
way as a physical oscilloscope.

If data is available in the BoomBox’s buffer, the Save data button becomes active (see Fig.
27) and the data can be saved to disk in comma-separated value format (.csv). Optionally,
if MATLAB is installed, it is possible to directly launch it, import and plot the data.

The MATLAB function file used to import and plot the data can be found in the Boom-
Box Control install folder (boomboximport.m).

40

Programming and control software on the PC

5.3.5.2 TRANSIENT GENERATOR

When enabled, this feature can be used to produce up to 6 step events on any global vari-
able defined in the code. The steps are applied at the specified sample instant each time
a datalogging event is triggered, either manually by the user, or automatically depending
on the configuration of the datalogging module.

Fig. 27. BoomBox Control Transient generator screen.

41

Analog data acquisition system (ADC)

Chapter 6

PERIPHERAL DRIVERS

Abstract — This chapter describes the driver framework provided to the user to access
the various BoomBox peripherals from the DSP in a transparent manner.

Keywords — ADC, Acquisition, PWM, Frequency generator, Freq gen, Interrupt, ISR, IRQ, Sam-
pling clock, GPI, GPO, DAC, User LED

6.1 ANALOG DATA ACQUISITION SYSTEM (ADC)
As previously presented in section 2.2, the configuration of the analog input chain is split
into a hardware part and a software part. The present chapter deals with the software part
of the data acquisition and explains how to use it from the C code. More information on
how to properly set-up the hardware part is given in section “2.2 Analog inputs”, page 13.

From the 16-bit digitally-converted value UCONV (see Fig. 5, page 14) the software driver
computes the floating-point quantity float_in such that :

float_in = UCONV ∙ gain + offset

Note :

Apart from allowing the manipulation of meaningful quantities, the gain and offset param-
eters also provide an easy way of compensating for sensitivity errors in the input chain.

Warning :

The hardware and software gains should not be confused. The first aims to fully exploit the
input voltage range of the analog-to-digital converter and thus increase the resolution and
reduce quantization effects. The second aims to ease-of-use and calibration purposes only.

6.1.1 TYPICAL WORKFLOW
When configuring the analog inputs, the following steps are typically required :

1) For each channel, configure the necessary hardware gain, cut-off frequency and secu-
rity limits on the front panel. Refer to section 2.2 for more information.

2) For each channel, determine the necessary software gain and offset between the con-
verted voltage UCONV and its corresponding quantity float_in.

If necessary, these parameters should be determined through a calibration procedure.
If using an imperix sensor, the gain parameter can simply be read on the sensor case.

3) For each channel, apply the computed software parameters through the routine :

a) SetADCAdjustments();
4) Configure the sampling instant with respect to other operations (PWM, interrupts)

using the routine

b) ConfigSampling(freqgen, phase);

42

Peripheral drivers

5) Get the desired measurements in real time (during the interrupts) through the routine :

c) GetADC();

6.1.2 CONFIGURING THE DATA ACQUISITION SYSTEM
a) SetADCAdjustments(channel, gain, offset);

This routine sets the parameters of the software affine transformation for each channel
separately. The corresponding arguments are given in Table 9 :

Argument Description

channel Index of the channel that is addressed (0 ≤ channel ≤ 15)

gain Desired gain/sensitivity

offset Desired corrective offset

Table 9. Configuration parameters of an ADC channel.

The default values for the affine transformation parameters are the following :

Code :
float gain = 1.0;
float offset = 0.0;

6.1.3 CONFIGURING THE SAMPLING CLOCK
The sampling clock is produced in the same way as the two external interrupt sources.
The corresponding principles of operation are described in section 6.2 and 6.6. To con-
figure it, the following routine should be called in UserInit() :

b) ConfigSampling(freqgen, phase);

The phase parameter indicates the instant at which the ADC measurements are avail-
able in memory, with respect to the period of the frequency generator used as source.
The physical sampling is therefore made slightly before that instant. In practice, 4 μs, what
corresponds to the conversion and acquisition delay. With a sampling clock and an interrupt
configured on the same frequency generator and with the same phase, the data read in
the interrupt will be the latest measurement it is possible to sample.

Example :
The following code configures the sampling clock so that the sample is available at the mid-
dle of the period of the frequency generator used to generate the PWM outputs :
ConfigSampling(1, 0.5); // Phase of 180° between frequency generator #1 and sampling

6.1.4 RETRIEVING CONVERTED MEASUREMENTS
c) GetADC(channel);

At any time, the converted value can be easily retrieved by specifying which channel
should be addressed. Table 10 shows the necessary arguments :

Argument Description

channel Index of the channel that is addressed (0 ≤ channel ≤ 15)

Table 10. Arguments of the GetADC driver routine.

Note :

Please also refer to the tutorials on www.imperix.ch for detailed configuration examples.

43

Pulse-width modulation system (PWM)

6.2 PULSE-WIDTH MODULATION SYSTEM (PWM)

6.2.1 BASIC PRINCIPLE OF OPERATION

modulator

PHASE
CONFIG

CLK
COUNTER
PERIOD

PWMH
PWML

DUTY
DEADTIME
SYNC

freq gen

PERIOD

CLK

COUNTER
PERIOD

SYNC

ACLK

PWMH[0:7]
PWML[0:7]

XINT1
XINT2
SCLK

PWM

x8x4

m
ux

m
ux

int clk gen

PHASE
CONFIG

CLK
COUNTER
PERIOD

INTCLK

POSTSCALER

SYNC

x3

m
ux

m
ux

CO
U
N
TE

RS
[0
:3
]

PE
RI
O
D
S[
0:
3]

Fig. 28. Block diagram of the PWM system.

The BoomBox provides a monolithic PWM system which is implemented in FPGA. As
seen in Fig. 28, it is composed of the following subsystems :

» 4 frequency generators (freq gen), which act as common frequency sources for other
blocks that can be mapped to them. The latter can be either modulators or interrupt
clock generators. The block diagram of each frequency generator is shown in Fig. 29 :

PERIOD

CLK

COUNTER

PERIOD

SYNC

Frequency generator

up counter

RESET
LIMIT

CLK

COUNTER

Fig. 29. Block diagram of a frequency generator.

» 8 modulators, corresponding to each PWM output channel, that define the switching
instants of the gate-drive signals. Each channel features two complementary signals
that correspond to one switching cell. Fig. 30 shows the corresponding block diagram.

For each switching cell, only three possible states are defined, as shown in Table 11 :

State Description

HIGH The upper signal is ON, the lower is OFF

LOW The upper signal is OFF, the lower is ON

BLOCKED Both signals are OFF

Table 11. Switching states of each PWM channel.

44

Peripheral drivers

carrier gen

PHASE
PERIOD

COUNTER

CARRIER

CONFIG
RESET

CLK

comparator

PWM

deadtime gen

CLK
output logic

CONFIG

PWML
PWMH

PHASE
CONFIG

SYNC

COUNTER

PERIOD

PWMH
PWML

DUTY

DEADTIME

CLK

PWML
PWMH

PWML
PWMH

DEADTIME
PWM

DUTYCYCLE
CARRIER

Modulator

ENABLE

Fig. 30. Block diagram of a modulator.

» 3 interrupt clock generators (int clk gen) provide clocks to drive the two DSP external
interrupt sources XINT1 and XINT2, as well as the ADC sampling clock SCLK. These are
connected to the INTCLK output of each interrupt clock generator, as shown in Fig. 31 :

PHASE

CLK

COUNTER

PERIOD

INTCLK

POSTSCALER

SYNC

Interrupt clock generator

clock divider

DIVIDER

CLKIN

CLKOUT

clock gen

PHASE
PERIOD

COUNTER

CLOCK

CLK

RESET

RESET

Fig. 31. Block diagram of an interrupt clock generator.

6.2.2 GENERATED PWM PATTERNS
Depending on the configuration of the carrier and their relative phase shift, various PWM
patterns can be generated :

PWMH

PHASE

COUNTER

CARRIER
DUTYCYCLE

PWML

PWM

PERIOD

0

Frequency generator

Modulator

Fig. 32. Typical PWM pattern corresponding to a single-edge modulation strategy, with a sawtooth carrier.

45

Pulse-width modulation system (PWM)

PWMH

PHASE

COUNTER

CARRIER
DUTYCYCLE

PWML

PWM

PERIOD

0

Frequency generator

Modulator

Fig. 33. Typical PWM pattern corresponding to a single-edge
modulation strategy, with an inverted sawtooth carrier.

PWMH

PHASE

COUNTER

CARRIER
DUTYCYCLE

PWML

PWM

PERIOD

0

Frequency generator

Modulator

Fig. 34. Typical PWM pattern corresponding to a double-edge modulation strategy, with a triangle carrier.

PWMH

PHASE

COUNTER

CARRIER
DUTYCYCLE

PWML

PWM

PERIOD

0

Frequency generator

Modulator

Fig. 35. Typical PWM pattern corresponding to a double-edge
modulation strategy, with an inverted triangle carrier.

Using multiple modulators on a single common frequency generators enables the user
to generate interleaved PWM signals by varying each individual modulator’s phase.

46

Peripheral drivers

6.2.3 INTERRUPT CLOCKS
Similarly to the PWM modulators, interrupt clock generators can be mapped to one of
the frequency generator modules. They are used to drive one of the two external DSP
interrups (XINT1 and XINT2) and the ADC sampling clock (SCLK). The produced interrupt
clocks can be seen in Fig. 36. More information on the API to configure the interrupts and
the sampling clock can be found in sections 6.6 and 6.1.3.

INTCLK

PHASE

COUNTER

CLOCK

PERIOD

0

POSTSCALER

Frequency generator

Interrupt clock generator

Fig. 36. Interrupt clock generated from a frequency generator module.

6.2.4 SYNCHRONIZATION OF FREQUENCY GENERATORS
Using the SYNC signal, all the frequency generator modules can be synchronized as seen
in Fig. 37. This synchronization mechanism is triggered by calling the SyncFreqGens()
routine of the PWM system.

COUNTER0
PERIOD0

0

COUNTER1
PERIOD1

0

COUNTER2PERIOD2

0

SYNC

NOT IN SYNC IN SYNC

Fig. 37. Synchronization of multiple frequency generators of same and different periods.

6.2.5 TYPICAL WORKFLOW
In order to properly use the PWM signal generation system, the user is advised to make
use of the following workflow and driver-layer routines :

1) Configure an available frequency generator module :

a) SetFreqGenPeriod(...);
2) Configure the PWM channel :

b) ConfigPWMChannel(...);
c) SetPWMPhase(...);

3) Activate the PWM channel :

d) ActivatePWMChannel(...);

47

Pulse-width modulation system (PWM)

4) Update the duty-cycle during the interrupts :

e) SetPWMDutyCycle(...);
5) After each configuration change, the FPGA registers have to be updated :

f) UpdatePWMData();

Note :

Please also refer to tutorial n°1 for a detailed example on how to use and configure the PWM
system. The tutorials are available at the address http ://imperix.ch/category/code-examples.

6.2.6 CONFIGURING THE FREQUENCY GENERATORS
A frequency generator is characterized by a unique PERIOD, which can be configured
using the following routine :

a) SetFreqGenPeriod(freqgen, period);

This routine sets the PERIOD parameter of the chosen frequency generator (freqgen).
Inside the FPGA, a timer counts up at a rate of 30 MHz. The switching frequency fSW for
each frequency generator is given by the following relation :

fSW = 30 MHz / PERIOD
The range of achievable switching frequencies depends on the required angular resolu-
tion. Table 12 gives an overview of the achievable performance for a few switching fre-
quencies :

fSW frequency Relative resolution Angular resolution

1 kHz 0.03 ‰ < 0.02°

50 kHz 1.6 ‰ 0.6°

200 kHz 6.6 ‰ 2.4°

1 MHz 33 ‰ 12°

Table 12. Angular resolution with respect to the switching frequency

Example :
A PWM switching frequency of 15 kHz on frequency generator #1 can be achieved using the
following code:
SetFreqGenPeriod(1, 2000) ; // switching frequency = 30 MHz/2000 = 15 kHz

6.2.7 CONFIGURING THE PWM CHANNELS
The following routines are used to configure each PWM channel :

b) ConfigPWMChannel(channel, freqgen, style, deadtime);

This function configures a PWM channel without enabling it. It sets all parameters of the
given PWM channel, except the phase. The style parameter can be one of the following :

» TRIANGLE
» SAWTOOTH
» INVTRIANGLE
» INVSAWTOOTH

48

Peripheral drivers

c) SetPWMPhase(channel, phase);

This function sets the phase of the PWM channel with respect to the main counter of the
associated frequency generator. The phase parameter is given as a float and the actual
value written to the configuration register is computed depending on the period and
the configured deadtime. A value of 1.0 corresponds to a 360° phase shift.

Note :

These two configuration routines should be called in “UserInit()”. It is recommended not
to change these parameters in any of the UserInterrupt() routines.

Example :
Assuming that the switching frequency of frequency generator #1 has been set to 15 kHz as
described in section 6.2.6, the following code configures channels 2 and 3 to use frequency
generator #1 with a dead-time of 300 ns and sawtooth carriers. Besides, channel 2 has a phase
of 0°, while channel 3 is phase-shifted by 90°:
ConfigPWMChannel(2, 1, SAWTOOTH, 10); // DT of 10x TPWM clk = 10x(1/30MHz) = 300ns
ConfigPWMChannel(3, 1, SAWTOOTH, 10); // DT of 10x TPWM clk = 10x(1/30MHz) = 300ns
SetPWMPhase(2, 0.0); // phase shift of 0.0x360° = 0°
SetPWMPhase(3, 0.25); // phase shift of 0.25x360° = 90°

6.2.8 ACTIVATING THE PWM CHANNEL
d) ActivatePWMChannel(channel);

This routine is used to indicate to the FPGA PWM system that it should produce a valid
modulation output on the specified channel when the BoomBox goes into the OPERAT-
ING state. This can also be used in multi-converter applications to enable or disable parts
of the application circuit depending on a user-level state machine. For this purpose, the
corresponding routine DeactivatePWMChannel(channel) is available.

6.2.9 UPDATING THE DUTY-CYCLE
e) SetPWMDutyCycle(channel, dutycycle);

This routine computes the correct value for the DUTYCYCLE register depending on the
carrier type and period. It is meant to be used in the UserInterrupt() routines to update
the PWM outputs in real-time.

6.2.10 UPDATING THE CONFIGURATION INSIDE THE FPGA
f) UpdatePWMData();

This last step is necessary in order to actually update the PWM data inside the FPGA but
in a local buffer. By doing so, it is easily guaranteed that the modulation parameters are
always updated simultaneously among all PWM channels.

Note :

In fact, the PWM parameters are actually applied only when the frequency generator coun-
ter reaches zeros. This guarantees the integrity of the switching pattern even when mul-
tiple switching frequencies are used.

6.2.11 ENABLING THE OUTPUTS
Outputs are automatically enabled by the core in the OPERATING state and disabled in
the BLOCKED and FAULT states.

49

Advanced PWM Modes

6.3 ADVANCED PWM MODES
In addition to the standard pulse-width modulation system described in the previous
section, the BoomBoox authorizes two advanced modes for PWM generation. Although
these alternative implementations are done inside the FPGA, the activation and configu-
ration of these features are accessible through C-code.

6.3.1 MODULATORS WITH SINGLE PWM OUTPUT
Unlike the standard PWM configuration that provides 8 PWM modulators with compli-
mentary signals output (PWMH, PWML), this advanced mode activates 16 modulators per
BoomBox, each generating a single PWM signal. In this mode, each modulator benefits
from all the parameters described in the chapter above (source, phase, carrier type, dead-
time,...) and are configured in a similar way.

carrier gen

PHASE
PERIOD

COUNTER

CARRIER

CONFIG
RESET

CLK

comparator

PWM

deadtime gen

CLK
output logic

CONFIG

PWML
PWMH

PHASE
CONFIG

SYNC

COUNTER

PERIOD

PWM

DUTY

DEADTIME

CLK

PWML
PWMH

PWML
PWMH

DEADTIME
PWM

DUTYCYCLE
CARRIER

Modulator

ENABLE

Fig. 38. Block diagram of a modulator.

This advanced mode can be enabled during the initialization by calling the following
function once : SetMuxMode(MUX16). After calling this command, all the 16 optical out-
puts are driven by 16 independent modulators. Then, the procedure for configuring indi-
vidual modulators is identical as explained in section 6.2.7, page 47. The following table
lists the outputs used on the front panel for each modulator output.

Modulator # Front panel optical output

0 PWM0H

1 PWM1H

... ...

7 PWM7H

8 PWM0L

9 PWM1L

... ...

15 PWM7L

Table 13. Front panel PWM channel mapping for single-output mode.

6.3.2 MODULATORS WITH PWM AND ACTIVE OUTPUTS
In the normal MUX8 mode, it is also possible to have the regular PWMH output with
an ACTIVE signal instead of PWML. This is useful in some specific use cases where half-
bridge drivers require one PWM output and an enable signal.

50

Peripheral drivers

The ACTIVE signal of a PWM channel output pair is on if that channel is configured in
that mode, has been activated, and the BoomBox is enabled.

Note

When using this mode, it is assumed that the gate drivers connected at the other side of
the fiberoptic links re-generate an adequate deadtime.

carrier gen

PHASE
PERIOD

COUNTER

CARRIER

ACTIVE

CONFIG
RESET

CLK

comparator

PWM

deadtime gen

CLK
output logic

CONFIG

PWML
PWMH

PHASE
CONFIG

SYNC

COUNTER

PERIOD

PWMH
ACTIVE

DUTY

DEADTIME

CLK

PWML
PWMH

PWML
PWMH

DEADTIME
PWM

DUTYCYCLE
CARRIER

Modulator

ENABLE

Fig. 39. Block diagram of a modulator.

To use this mode, the following overloaded version of the ConfigPWMChannel routine
must be used :

g) ConfigPWMChannel(channel, freqgen, style, deadtime, outmode);

with the outmode parameter set to PWMH_ACTIVE.

6.3.3 DIRECT ACCESS TO OPTICAL OUTPUTS
The BoomBox also provides a specific mode where the state of each optical output can
be directly written by the user’s control routines, hence bypassing the modulators. As
shown by the following figure, this mode can be enabled on a partial set of PWM lines,
while the others are still driven by standard modulators.

carrier gen

PHASE
PERIOD

COUNTER

CARRIER

CONFIG
RESET

CLK

comparator

PWM

deadtime gen

CLK
output logic

CONFIG

PWML
PWMH

PHASE
CONFIG

SYNC

COUNTER

PERIOD

PWMH
PWML

DUTY

DEADTIME

CLK

PWML
PWMH

PWML
PWMH

DEADTIME
PWM

DUTYCYCLE
CARRIER

Modulator

ENABLE

direct access
CONFIG

ENABLE
VALUE

direct access
CONFIG

ENABLE
VALUE

PWMH

PWML

Fig. 40. Block diagram of direct access logic for a given PWM-pair.

51

General-purpose inputs (GPI)

This mode is disabled by default. To be used, it must be enabled (allowed) calling Allo-
wOpticalOutputDirectAccess(). Then, each ouput line has to be configured by calling
the following function during the initialization : UnlockOpticalOutputDirectAccess(int
output).

The following figure summarizes the physical PWM line attribution as a function of the
optical output number passed to the function.

D0 D1 D2 D3 D4 D5 D6 D7

H

L

6/14 7/15

H

L

H

L

H

L

H

L

H

L

H

L

H

L

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Fig. 41. Overview of front panel optical outputs numbering for direct access.

Once the direct access is unlocked, changing the state of a optical output can be done
by calling ForceOpticalOutput(int output, int value). This function directly updates the
FPGA (after a 200-600ns of communication delay).

Apart from the possibility to force the state of a unique optical output, there is also a pos-
sibility to update the state of all direct access-enabled outputs. This can be done by call-
ing ForceOpticalOutputRegister(unsigned int value). This method should be preferred
when numerous calls to this routines are necessary (avoiding performance issues) or when
the switching of multiple optical outputs must to be guaranteed to be simultaneous.

Note :

Upon a fault detection, all optical outputs configured for direct access are automatically
reset at ‘0’ state (inactive).

Warning:

Unlike with normal PWM output modes, the direct access to optical outputs does NOT
guarantee the complementarity of gating signals by pairs. As such, it is of the responsibil-
ity of the user to make sure that no inappropriate gating signals may ever be produced in
order to avoid shoot-trough in any switching cell.

6.4 GENERAL-PURPOSE INPUTS (GPI)
The GPI module is constituted by a single 8-bit register. The two related routines are pre-
sented in Table 14.

Name Argument Functionality

GetGPIbit n : the number of the bit (7 to 0) Get the value of the chosen bit

GetGPI void Get the value of the complete register

Table 14. General-purpose Input routines

6.5 GENERAL-PURPOSE OUTPUTS (GPO)
The GPO module is constituted by a single 8-bit register. Several driver routines are asso-
ciated with it :

52

Peripheral drivers

Name Arguments Functionality

SetGPObit(n) n : the number of the bit (7 to 0) Set the chosen bit to 1

ClearGPObit(n) n : the number of the bit (7 to 0) Set the chosen bit to 0

ToggleGPObit(n) n : the number of the bit (7 to 0) Toggle (swap) the value of the chosen bit

ForceGPObit(n,val) n : the number of the bit (7 to 0)

val : the new value of the bit

Force a given bit to a given value

SetGPO(val) val : the new value of the register Set a value on the whole GPO register

Table 15. General-purpose Output routines

6.6 INTERRUPT SOURCE SELECTION (IRQ)

6.6.1 BASIC PRINCIPLE OF OPERATION
The BoomBox has two external hardware interrupt lines. They are connected to the FPGA
PWM core, which makes it possible to run code synchronously with the operation of the
modulation. Additionally, one timer-based interrupt is available for low-priority tasks. Fig.
42 shows a flow chart of the interrupt management process.

Core Layer User LayerDriver Layer

UserInterrupt1()
user.c

Contains user-de�ned control code.

Ext1Interrupt()
interrupts.c

xxx_user_isr()

If the last call did return, call the user-
de�ned interrupt routine. Else, declare
an error.

RETURNS :
void

Ext2Interrupt()
interrupts.c

xxx_user_isr()

If the last call did return, call the user-
de�ned interrupt routine. Else, declare
an error.

RETURNS :
void

TimerInterrupt()
interrupts.c

xxx_user_isr()

If the last call did return, call the user-
de�ned interrupt routine. Else, declare
an error.

RETURNS :
void

RETURNS :
SAFE if no error
UNSAFE if errors

RegisterXXXInterrupt(...)
core.c

CoreError()
core.c

CoreError()
core.c

CoreError()
core.c

Con�gure the interrupt map on user-
de�ned interrupt hangling functions.

UserInterrupt2()
user.c

Contains user-de�ned control code.

RETURNS :
SAFE if no error
UNSAFE if errors

RETURNS :
void

Fig. 42. Flow chart of the interrupt management process.

6.6.2 REGISTERING INTERRUPTS
It is possible to register an interrupt service routine for any of the three available interrupt
sources using the following functions :

» First event-based external interrupt source (XINT1) :
RegisterExt1Interrupt(user_isr, source, phase, postscaler);

» Second event-based external interrupt source (XINT2) :

53

Digital to analog converter (DAC)

RegisterExt2Interrupt(user_isr, source, phase, postscaler);

» DSP timer-based interrupt :
RegisterTimerInterrupt(user_isr, period);

The priority of these interrupts is highest for XINT1, intermediate for XINT2, and lowest
for the timer-based interrupt.

The two interrupt service routines UserInterrupt1 and UserInterrupt2 are pre-defined in
the provided user.c/.h canvas, but any function based on the same template can be used.

The external interrupt sources XINT1 and XINT2 are connected to the FPGA and mapped
to the chosen frequency generator module (source) by the above functions, enabling
DSP code to be executed synchronously with the PWM operation.

Note :

When both interrupt service routines are registered simultaneously, it must be reminded
that the XINT1 source has a higher level of priority than XINT2.

Example :
Assuming that the switching frequency of frequency generator #1 has been set to 15 kHz as
described in section 6.2.6, the following code configures UserInterrupt1 to be executed every
500 us using the DSP timer-based interrupt, while UserInterrupt2 is executed synchronously
to frequency generator #1, phase-shifted by 90°, once every two PWM periods:
RegisterTimerInterrupt(&UserInterrupt1, 500); // 500 us => 2 kHz
RegisterExt1Interrupt(&UserInterrupt2, 1, 0.5, 1);

Table 16.

6.7 DIGITAL TO ANALOG CONVERTER (DAC)
The DSP code can write new values in the 16-bit DAC registers at any time. The FPGA
module is responsible for updating the DAC chip at a rate of approximately 150 kHz. Two
routines are provided :

» SetDACValue(channel, value); writes the raw unsigned int value directly to the reg-
ister. A value of 0 will output a voltage of -5V, while a value of 65535 will output +5V.

» SetDACVoltage(channel, voltage); computes the correct register value necessary to
output the float voltage provided as parameter.

Example :
The following code executed periodically outputs three 120° phased sine waves:
SetDACVoltage(0, 5.0 * sin(angle + 0.0 * 2.0 * PI / 3.0)); // A0
SetDACVoltage(1, 5.0 * sin(angle + 1.0 * 2.0 * PI / 3.0)); // A1

6.8 USER LED
The USER LED can be controlled using the following routine :

SetUserLED(color);
where color can be one of the pre-defined enums : LED_OFF, LED_RED, LED_GREEN
or LED_ORANGE).

54

Peripheral drivers

6.9 INCREMENTAL ENCODER INPUT

6.9.1 BASIC PRINCIPLE OF OPERATION
The encoder input allows interfacing with one or two incremental encoders providing
quadrature outputs (usually called A and B), with or without a reset line (usually called Z).
These outputs have to be connected to the GPI lines at the back of the BoomBox (see
pinout in “Table 5. GPI pin assignments.”, page 20).

The encoder module counts all 4 edges of the A and B inputs, meaning that the angu-
lar resolution is actually 4 times better than the ppr value usually specified for a given
encoder. Additionally, the value returned by the BoomBox to the user is not the instan-
taneous value of the counter, but the value latched at the last rising edge of the SCLK,
similar to the S&H (sample and hold) feature of the analog inputs. This is done to ensure
the timing accuracy of the measured position.

The following figures show typical timing diagrams for clockwise and counterclockwise
rotation of standard incremental encoders :

COUNTER

A

B

Z

Angle3.14 3.45 3.76 4.07 4.38 4.70 5.01 5.32 5.63 5.94 0.28

SCLK

Incremental encoder outputs

Decoder
4 x PPR

0

6.25

Fig. 43. Typical timing diagram of an incremental encoder rotating clockwise

COUNTER

A

B

Z

Angle-3.14 -3.45 -3.76 -4.07 -4.38 -4.70 -5.01 -5.32 -5.63 -5.94 -0.28

SCLK

Incremental encoder outputs

Decoder

- 4 x PPR

0

-6.25

Fig. 44. Typical timing diagram of an incremental encoder rotating counterclockwise

55

Incremental Encoder input

6.9.2 CONFIGURING A DECODER MODULE
Configuring the decoder modules is done using one of the following routines :

a) ConfigDECModule(ppr, inputmode, module)

This routine configures decoder module 0 or 1 (according to the module parameter) with
the given pulses per rotation (ppr parameter). Only the ppr parameter is mandatory. If not
specified, inputmode is SINGLEENDED and module is 0 by default.

Note:

If the specified inputmode is DIFFERENTIAL, then the configured module is always number
0. Indeed, as all physical input signals are used by module 0, those of module 1 become
inaccessible, and module 1 is disabled.

b) ConfigDECModule(ppr, inputmode, module, resetmode, direction, invert)

This routine provides additional configuration parameters. resetmode can be set to
MAXVALUE, which disables the Z input and resets the counter each turn based on the
provided ppr value. Additionally, the counting direction can be reversed or the inputs
inverted using the direction and invert parameters respectively.

6.9.3 ACCESSING THE COUNTER VALUE
Accessing the counter value is done using the following routine :

float GetDECAngle(module)
This returns the last sampled counter value, converted to radian according to the con-
figured ppr value.

56

Peripheral drivers

57

Installing the license file

Chapter 7

SOFTWARE LICENSE VERSIONS

Abstract — This chapter describes the different versions of the BoomBox software, their
advantages and limitations. Some features are exclusively present in the expert version of
the BoomBox software package. This version essentially aims to operate multiple Boom-
Boxes as a unique control platform, making use of one BoomBox as a master as well as
additional BoomBoxes as I/O extension units.

Keywords — Installer, license, Standard software, Lite software, Expert software, Multi-Boom-
Box, Master, Slave, Synchronization, Several BoomBoxes, I/O extension

7.1 INSTALLING THE LICENSE FILE
When installing BoomBox software, be it the C/C++ development environment or the
Simulink Automated Code Generation toolbox, the user is asked to input the license file
provided by imperix.

The contents of this license file determines which version will be installed on your com-
puter. The following paragraph describes the specificities of each version.

7.2 SOFTWARE PACKAGES
The BoomBox is available in three variants, based on the same hardware, but with differ-
ent software features :

» A standard version, allowing the operation of one BoomBox with full functionality.
» A lite version, allowing the operation of one BoomBox with several limitations, provid-

ing a low-cost alternative to the standard version.

» An expert version, addressing the operation of multiple BoomBoxes in I/O extension
mode, using the multi-pin connector present on the rear side of the BoomBox.

Note :

When operated in I/O extension mode, the stacked BoomBoxes behave as a single mono-
lithic system which possesses further I/O capabilities. Concretely, the stack of BoomBoxes
operates using one DSP (that of the master) and several FPGAs (in the master and the other
units). This distinguishes from the parallel operation of BoomBoxes, that communicate
through a rather slow medium (e.g. CAN) and remain essentially independent controllers.

All versions are fully compatible and inter-changeable.

7.3 LITE VERSION LIMITATIONS
The Lite software version has the following limitations :

» Switching and interrupt frequency : limited to 1 kHz

58

software license versions

» PWM channels : limited to 4 modulators (8 or 4 outputs depending on output mode)
» ADC channels : limited to 8 inputs
» DAC channels : limited to 2 outputs
» Sampling configuration : phase fixed at 0.5

If a C/C++ code or SImulink model containing access to unavailable channels or trying to
switch faster that 1 kHz is executed, warning messages will be displayed in BoomBox Con-
trol in the Message Log tab, showing which parameters have been intentionally altered
to comply with the limitations of the Lite version.

7.4 EXPERT VERSION FEATURES

7.4.1 STACKING SEVERAL BOOMBOXES
To stack multiple BoomBoxes together, the following steps must be followed :

1) All devices must be daisy-chained using short flat cables (supplied by imperix).
2) The master BoomBox must contain a DSP carrier board from Texas Instrument.
3) The address of the master BoomBox must be set to ‘0000’.
4) The slave BoomBoxes must not contain a DSP carrier board
5) The slave BoomBoxes must have their addresses set in increasing order starting from

‘0001’.

59

Expert version features

Connection of the multi-BoomBox setup with the PC through JTAG or USB is done on the
master device. The CAN ports are only available on the master BoomBox.

Fig. 45 shows an example of a stack constituted by three BoomBoxes.

EXT. INTERFACE

EXT. INTERFACE

EXT. INTERFACE

Master BoomBox
address ‘0000’

Slave BoomBox
address ‘0001’

Slave BoomBox
address ‘0010’

Fig. 45. Stack of three BoomBoxes using two units as I/O extensions.
Disabled connectors on slave devices are shown in gray.

In order to change the address of a given BoomBox, the enclosure must be opened and
the DIP switch present of the motherboard configured with the correct address. The
floorplan of the motherboard is shown in Fig. 46, highlighting the location of the DIP
switch. The corresponding configuration of the DIP switches inside the BoomBoxes is
shown in Fig. 47.

ON1
2

3
4

D
SP

 c
on

tr
ol

 c
ar

d

D
IP

Fig. 46. Floorplan of the motherboard of the BoomBox, showing the location of
the DSP control card and the DIP switch programming the address.

ON

1234

ON

1234

ON

1234

ON (0)

OFF (1)

0000
Master Slave 0

0001
Slave 1

0010

Fig. 47. Positions of the DIP switches inside the three stacked BoomBoxes.

When properly configured, the SYNC LED of the front panel should display the appro-
priate color, namely :

» GREEN for the master BoomBox
» ORANGE on the slave BoomBoxes

60

software license versions

» RED if the software running on the DSP is incompatible with multi-BoomBox opera-
tion or in case of synchronization error between the BoomBoxes.

Note :

This LED remains permanently off with the standard version of the BoomBox software.

Additionally, at the end of the boot sequence of the multi-BoomBox setup, the version
of the BoomBox library is shown on the command line prompt, as well as the list of the
detected BoomBoxes (FPGA devices), for instance :

Console :
BoomBox CLI Oct 19 2015 10:57:35.
Software v.2.2.0 Expert
BoomBox #0 : Hardware v.2.2
BoomBox #1 : Hardware v.2.2
Initialization complete. The BoomBox is now ready for operation.
Type ‘enable’ (or ‘disable’) to authorize (or block) the PWM outputs.
Type ‘user’ to access the user-defined commands and ‘ls’ to list all available commands.

user@boombox / >

7.4.2 PRINCIPLES OF OPERATION

7.4.2.1 PROGRAMMING OF THE SETUP

As only the master BoomBox contains a DSP, the programming of the overall system,
regardless of the number of stacked units, is absolutely identical as the programming of
one unit only.

7.4.2.2 USE OF THE PERIPHERAL DRIVERS

The operation of a multi-BoomBox setup using the expert software package is very simi-
lar to the operation of a single BoomBox, except that all function prototypes possess a
optional argument indicating which BoomBox shall be addressed. The code below gives
a simple comparative example :

Standard version, one BoomBox
I1 = GetADC(2); // ch2, bb0
I2 = GetADC(4,0); // ch4, bb 0
SetDACVoltage(3,...,0); // ch3, bb0

SetPWMDutyCycle(7,...); // ch7, bb0
SetPWMDutyCycle(6,...,0); // ch6, bb0

UpdatePWMData(); // bbox 0

Expert version, several BoomBoxes
I1 = GetADC(2,0); // ch2, bb0
I2 = GetADC(3,1); // ch3, bb1
SetDACVoltage(0,...,1); // ch0, bb1

SetPWMDutyCycle(7,...,2); // ch7, bb2
SetPWMDutyCycle(6,...,1); // ch6, bb1

UpdatePWMData(0); // bbox 0
UpdatePWMData(1); // bbox 1
UpdatePWMData(2); // bbox 2

Naturally, exceptions to this rule are the routines directly related to the DSP and the soft-
ware core, which are dependent upon the DSP to perform their function and are subse-
quently not available on slave BoomBoxes. Examples are given by CAN functions, inter-
rupt configuration functions, etc.

In any case, the header files provide detailed information on all functions and should be
able to clarity any doubts about differences between the standard and expert versions.

61

Expert version features

7.4.2.3 FAULT MANAGEMENT

When a hardware fault1 occurs on any input of any BoomBox, the PWM outputs of all
BoomBoxes are immediately blocked. The fault can subsequently be acknowledged on
the corresponding BoomBox device, as in single BoomBox applications.

7.4.2.4 SYNCHRONIZATION ACROSS BOOMBOXES

In a multi-BoomBox setup, 4x N clock generators are available to the user, where N is the
number of stacked BoomBoxes. However, when it is desired to synchronize some opera-
tions across multiple BoomBoxes (e.g. modulation, sampling), some constrains exist so as
to guarantee some frequency and phase relationships across the BoomBoxes.

In order to run some operation such as sampling or modulation with the exact same
phase and frequency across two or more BoomBoxes, their respective frequency gener-
ators must be configured in the same manner. The code below shows an example that
mirrors the frequency generator #2 across three BoomBoxes :

Code example :
SetFreqGenPeriod(2, PERIOD, 0); // PERIOD on freq gen #2 of bbox #0
SetFreqGenPeriod(2, PERIOD, 1); // PERIOD on freq gen #2 of bbox #1
SetFreqGenPeriod(2, PERIOD, 2); // PERIOD on freq gen #2 of bbox #2

RegisterExt1Interrupt(&MyUserISR, 2, 0.0, 0); // an ISR is registered on freq gen #2

In order to maintain a perfect relationship of all frequency generators #2, the BoomBoxes
run internally some synchronization mechanisms that guarantee that all the events asso-
ciated with these frequency generators remain perfectly synchronous, with a absolute
maximum timing difference of ± 125 ns (3 σ, 1 hour).

These mechanisms only operate when a DSP interrupt has been registered on the cor-
responding frequency generator. Therefore, in order to guarantee the synchronization
across several BoomBoxes, the following rules must be followed :

» The same period must be configured on the same frequency generator in all Boom-
boxes accross which the synchronization is desired.

» An DSP interruption routine must be registered on that frequency generator (either
EXT1 or EXT2) so that synchronization is guaranteed.

These principles of operation are illustrated in Fig. 48 :

freq gen 0 freq gen 1 freq gen 2 freq gen 3 freq gen 0 freq gen 1 freq gen 2 freq gen 3

Master BoomBox Slave BoomBoxes

EXT1 EXT2

Fig. 48. Configuration of the frequency generator synchronization in multi-BoomBox operation.

A consequence of these principles of operation is that only up to two frequency genera-
tors can be fully synchronized across multiple BoomBoxes. On the other hand, this also

1. More information of the different types of fault can be found in §4.2.1, page 27.

62

software license versions

means that the remaining non-synchronized frequency generators can be freely config-
ured with different parameters between different BoomBoxes. This is particularly impor-
tant, as this allows to configure the sampling differently as well.

7.4.2.5 CODE EXAMPLE

The following code example shows how to initialize a synchronous multi-BoomBox sys-
tem with two interleaved channels located in two different BoomBoxes :

Code example :
SetFreqGenPeriod(1, 3750, 0); // 8 kHz on freq gen #1 of bbox #0
SetFreqGenPeriod(1, 3750, 1); // 8 kHz on freq gen #1 of bbox #1

RegisterExt1Interrupt(&MyUserISR, 1, 0.0, 0); // timebases are synchronized by ISR

ConfigSampling(1, 0.0, 0); // Bbox #0 samples at 0° of freq gen #1
ConfigSampling(1, 0.0, 1); // Bbox #1 samples at 0° of freq gen #1

ConfigPWMChannel(2, 1, SAWTOOTH, 10, 0); // DT of 10x TPWM clk = 300ns
ConfigPWMChannel(2, 1, SAWTOOTH, 10, 1); // DT of 10x TPWM clk = 300ns

SetPWMPhase(2, 0.0, 0); // phase shift of 0.0x360° = 0°
SetPWMPhase(2, 0.5, 1); // phase shift of 0.5x360° = 180°

Note :

It is necessary to call the SetFreqGenPeriod routines before the RegisterExt#Interrupt to
enable synchronization of timebases across BoomBoxes.

In this case, the user-level interrupt service routine typically contains the following actions :

Code example :
MyUserISR {
 SetPWMDutyCycle(2, duty, 0); // duty is applied on ch #2 of bbox #0
 SetPWMDutyCycle(2, duty, 1); // duty is applied on ch #2 of bbox #1

 UpdatePWMData(0); // bbox 0
 UpdatePWMData(1); // bbox 1
}

7.4.3 ADVANCED SAMPLING OPTIONS
In a single BoomBox environment, all analog inputs are necessarily sampled simultane-
ously. The sampling instant is chosen by calling the ConfigSampling routine with the
desired phase argument.

Respectively, in a multi-BoomBox environment, the BoomBoxes can be setup to sample
their analog inputs either at different instants or at the same instant. This simply depends
on the configuration of the corresponding frequency generator. In both cases, the con-
figuration of the sampling requires to call the ConfigSampling routine for each device.

63

Expert version features

The three examples below illustrate different options :

Synchronous sampling :
SetFreqGenPeriod(1, 3750, 0); // 8 kHz on freq gen #1 of bbox #0
SetFreqGenPeriod(1, 3750, 1); // 8 kHz on freq gen #1 of bbox #1

RegisterExt1Interrupt(&MyISR, 1, 0.0, 0);

ConfigSampling(1, 0.0, 0) // Bbox #0 is 4us before 0° of freq gen #1
ConfigSampling(1, 0.0, 1) // Bbox #1 is 4us before 0° of freq gen #1

Correlated sampling :
SetFreqGenPeriod(1, 3750, 0); // 8 kHz on freq gen #1 of bbox #0
SetFreqGenPeriod(1, 3750, 1); // 8 kHz on freq gen #1 of bbox #1

RegisterExt1Interrupt(&MyISR, 1, 0.0, 0);

ConfigSampling(1, 0.0, 0) // Bbox #0 is 4us before 0° of freq gen #1
ConfigSampling(1, 0.5, 1) // Bbox #1 is 4us before 180° of freq gen #1

Independent sampling :
SetFreqGenPeriod(1, 3750, 0); // 8 kHz on freq gen #1 of bbox #0
SetFreqGenPeriod(2, 3000, 0); // 10 kHz on freq gen #2 of bbox #0
SetFreqGenPeriod(1, 3750, 1); // 8 kHz on freq gen #1 of bbox #1
SetFreqGenPeriod(2, 3000, 1); // 10 kHz on freq gen #2 of bbox #1

RegisterExt1Interrupt(&MyISR1, 1, 0.0, 0); // MyISR1 is triggered by freq gen #1
RegisterExt2Interrupt(&MyISR2, 2, 0.0, 0); // MyISR2 is triggered by freq gen #2

ConfigSampling(1, 0.0, 0) // Bbox #0 is sampled on freq gen #1
ConfigSampling(2, 0.0, 1) // Bbox #1 is sampled on freq gen #2

The synchronous sampling option is shown in Fig. 49 :

64

software license versions

PHASE

COUNTER

SCLK

PERIOD

0

Frequency generator

Sampling

Master

x16

x16

Common
system

timebase

Slave

PWMH

PHASE

CARRIER
DUTYCYCLE

PWML

PWM

Modulators

PHASE

SCLK

Sampling

PWMH

PHASE

CARRIER
DUTYCYCLE

PWML

PWM

Modulators

Fig. 49. Sampling and modulation in a multi-BoomBox environment.

65

Expert version features

SOFTWARE CHANGELOG

BoomBox software v2.0.0 :

» initial release.

BoomBox software v2.0.1 :

» FIX : In some cases, interrupts would never get enabled when DSP was started with
fault present.

» FIX : GetADC return value was wrong when ADC saturated at high end.

BoomBox software v2.2.0 :

» NEW : Multi-BoomBox operation with synchronization of frequency generators.
» NEW : SetMuxMode and OpticalOutputDirectAccess provide two new ways of con-

trolling the state of the output gating signals.
» NEW : SetCLIVars/GetCLIVars functions and corresponding CLI commands to conve-

niently read and write any global variable from the command line.
» NEW : Preparation of the command line interface for BBcontrol GUI software.
» NEW : Added the CLI silent mode (SendCLIMsg & ForceCLIMsg).
» NEW : Added an MPPT tracker to the API in the BoomBox template project.
» FIX : SetPWMDutyCycle : added saturation of dutycycle parameter.
» FIX : Improved robustness of CAN module in case of high error rate situations due to

noise.
» FIX : In a very specific case, generated PWM signal was not able to reach the absolute

off state; the smallest achievable duty cycle was 0.01 %.

BoomBox software v2.3.0

» NEW : Timestamping module to measure code execution times.

BoomBox software v2.3.1

» NEW : Support for BoomBox Control software with firmware updates and datalogging.

BoomBox software v2.3.2

» NEW : Support for BoomBox Control transient generator.

BoomBox software v2.4.0

» NEW : PWM alternate output mode : PWMH_ACTIVE.

66

software license versions

DOCUMENT REVISION HISTORY

» 01.02.2013 : Initial version derived from prior EPFL version, N. Cherix.
» 22.05.2013 : Revision of the software part to comply with the new core layer, N. Cherix.
» 11.10.2014 : Complete revision of document structure, M. Lambert.
» 21.11.2014 : Revision of ACQ-related parts of the documentation, M. Lambert.
» 17.12.2014 : Revision of the software section to comply with the new PWM modulator,

M. Lambert.
» 13.02.2015 : Update of the document template with contact information and warranty

statement, N. Cherix.
» 26.03.2015 : Revision of PWM sawtooth modulation waveform polarity, M. Lambert.
» 14.04.2015 : Added v2.0.1 software changelog, M. Lambert.
» 04.09.2015 : Specification of ACQ timing, M. Lambert.
» 04.09.2015 : Documentation of PWM advanced modes, S. Delalay.
» 22.10.2015 : Revision of interlock and general-purpose inputs schematics; specification

of overvalue detection delay, N. Cherix.
» 15.11.2015 : Addition of the expert software section, M. Lambert.
» 26.11.2015 : Added v2.2.0 software changelog, M. Lambert.
» 28.01.2016 : Typo fixes in code example §7.3.5, S. Delalay.
» 05.02.2016 : Update of Frontpanel USB paragraph, M. Lambert.
» 23.02.2016 : Added a note about the required function call sequence for Multi-Boom-

Box frequency generator synchronization and update of code examples, M. Lambert.
» 12.07.2016 : Updated software changelog and added a chapter on PC software describ-

ing BoomBox Control, M. Lambert.
» 08.08.2016 : Updated ‘Advanced PWM modes’. AllowOpticalOutputDirectAccess() was

missing, S. Delalay.
» 30.11.2016 : Added documentation of Quadrature Encoder Inputs, M. Lambert.
» 22.12.2016 : Added documentation of the incremental decoder, PWMH_ACTIVE output

mode, and Simulink Automated Code Generation feature, M. Lambert.
» 26.12.2017 : Revised outdated elements of the document, N. Cherix.

Contact

imperix ltd.
Rue de la Dixence 10
1950 Sion

phone: +41 (0)27 552 06 60
fax: +41 (0)27 552 06 69

www.imperix.ch
support@imperix.ch

	The BoomBox
	1.1 Introduction
	1.2 Block diagram
	1.3 Capabilities
	1.3.1 Interfaces
	1.3.2 Safety

	1.4 Controls and Connectors
	1.4.1 Front panel
	1.4.2 Back panel

	Input / output interfaces
	2.1 Features and capabilities
	2.2 Analog inputs
	2.2.1 Basic principle of operation
	2.2.2 Block diagram
	2.2.3 Electrical specifications
	2.2.4 Configurable input impedance
	2.2.5 Configurable gain
	2.2.6 Configurable low-pass filter
	2.2.7 Configurable safety limits
	2.2.8 Saving and restoring front-end configurations
	2.2.9 Getting ADC measurements
	2.2.10 Analog input connector pinout and cable
	2.2.11 Usage example
	2.2.12 Absolute maximum ratings

	2.3 Analog outputs
	2.3.1 Block diagram
	2.3.2 Electrical specifications
	2.3.3 Setting the output voltage

	2.4 Interlock
	2.4.1 Block diagram
	2.4.2 Electrical specifications
	2.4.3 Connector pinout
	2.4.4 Usage example

	2.5 Optical PWM outputs
	2.5.1 Block diagram
	2.5.2 Safety
	2.5.3 Configuring the modulation
	2.5.4 Optical specifications
	2.5.5 Connector type

	2.6 General-purpose inputs (GPI)
	2.6.1 Block diagram
	2.6.2 Electrical specifications
	2.6.3 Connector pinout

	2.7 General-purpose outputs (GPO)
	2.7.1 Block diagram
	2.7.2 Electrical specifications
	2.7.3 Connector pinout

	2.8 Controller area network (CAN)
	2.8.1 Electrical specifications
	2.8.2 Block diagram
	2.8.3 Connector pinout

	2.9 Ethernet

	Programming, debugging and monitoring interfaces
	3.1 DSP JTAG
	3.2 Back panel USB console
	3.3 Monitoring
	3.3.1 Front and back panel indicators
	3.3.2 DAC interface
	3.3.3 Datalogging using a USB key
	3.3.4 Web interface

	Software architecture and operating system
	4.1 Software architecture
	4.1.1 Driver Layer
	4.1.2 Core Layer
	4.1.3 User Layer

	4.2 Basic principles of operation
	4.2.1 Safety mechanisms
	4.2.2 Interrupts and sampled operation

	Programming and control software on the PC
	5.1 Programming in C/C++
	5.2 Programming using Simulink
	5.2.1 Prerequisites
	5.2.2 Getting started
	5.2.3 Main concepts
	5.2.4 Simulation
	5.2.5 Automated Code Generation
	5.2.6 Common issues using simulink
	5.2.7 Correspondance of API to library blocks

	5.3 BoomBox Control
	5.3.1 Basic principles
	5.3.2 Main Controls
	5.3.3 Analog input configurator
	5.3.4 Debugging
	5.3.5 Datalogging and generation of Transients

	Peripheral drivers
	6.1 Analog data acquisition system (ADC)
	6.1.1 Typical workflow
	6.1.2 Configuring the data acquisition system
	6.1.3 Configuring the Sampling clock
	6.1.4 Retrieving converted measurements

	6.2 Pulse-width modulation system (PWM)
	6.2.1 Basic principle of operation
	6.2.2 Generated PWM patterns
	6.2.3 Interrupt clocks
	6.2.4 Synchronization of frequency generators
	6.2.5 Typical workflow
	6.2.6 Configuring the frequency generators
	6.2.7 Configuring the PWM channels
	6.2.8 Activating the PWM channel
	6.2.9 Updating the duty-cycle
	6.2.10 Updating the configuration inside the FPGA
	6.2.11 Enabling the outputs

	6.3 Advanced PWM Modes
	6.3.1 Modulators with single PWM output
	6.3.2 Modulators with PWM and Active outputs
	6.3.3 Direct access to optical outputs

	6.4 General-purpose inputs (GPI)
	6.5 General-purpose outputs (GPO)
	6.6 Interrupt source selection (IRQ)
	6.6.1 Basic principle of operation
	6.6.2 Registering interrupts

	6.7 Digital to analog converter (DAC)
	6.8 User LED
	6.9 Incremental Encoder input
	6.9.1 Basic principle of operation
	6.9.2 Configuring a decoder module
	6.9.3 Accessing the counter value

	software license versions
	7.1 Installing the license file
	7.2 Software packages
	7.3 Lite version limitations
	7.4 Expert version features
	7.4.1 Stacking several BoomBoxes
	7.4.2 principles of operation
	7.4.3 Advanced Sampling options

