

Written by: nicolas.cherix@imperix.ch
 Revision/release date: A, 2015.02.09

Tutorial n°1

BOOST CONVERTER WITH MPPT FOR
PHOTOVOLTAIC APPLICATION
Written by: imperix Ltd, Rte. de l’Industrie 17, 1950 Sion, Switzerland
 Nicolas Cherix <nicolas.cherix@imperix.ch>

Addressed topics: – Configuration of the analog inputs
 – Configuration of the interrupts
 – Configuration of the sampling
 – Use of the command-line interface
 – Implementation of a basic closed-loop control

1 INTRODUCTION
This tutorial describes a possible approach to control a boost converter with the BoomBox. The
considered application aims at interfacing a photovoltaic panel to a higher voltage source and to
control the system such that a maximum power is extracted from the PV panel. The studied
system is depicted in Figure 1. Its main electrical parameters are indicated in Table 1:

Ipv
UDC

Upv S1

L

Epv

Figure 1 : Simplified electrical scheme of the system.

Name Value Specification Employed sensor Channel #

IPV 0-8A Current extracted from the solar panel LEM LAH50-P 0
UPV 10-25V Voltage across the solar panel LEM LV25-P 1
UDC 100V DC bus voltage (fixed) IX AMC1200 2
IDC 0-2A Current injected into the DC bus N.A. N.A.
fS 10kHz Switching frequency N.A. N.A.
L 1mH Smoothing inductor N.A. N.A.

Table 1 : Electrical parameters of the studied system.

Practically, a possible approach is to define the setvalue of the current extracted from the PV
panel IPV using an MPPT (maximum power point tracking) algorithm in order to maximise the
exchanged power. Assuming that the DC bus voltage is constant, a reasonable implementation
strategy is to place a fast control loop on the current IPV, whose setpoint is updated periodically
by an MPPT algorithm which is executed on a longer time basis.

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

2

2 HARDWARE SET-UP
In order to control the Boost (step-up) converter, a unique gating signal S1 is necessary, which is
wired on the PWM channel PWM #0 (low). Provided that the reverse conduction of the power
switch is attractive, the complementary signal (high) may be wired as well.

Additionally, three measurements are necessary in order to implement the corresponding
maximal control structure. These measurements are reported in Table 1. Depending on the
design choices, some of these measurements are dispensable.

2.a CONFIGURATION OF THE ANALOG INPUTS
Once the measurements are connected to the BoomBox using RJ45 cables, the coresponding
analog input channels must be configured on the BoomBox. The procedure is the following:

1) Select « analog inputs » on the frontpanel.
2) Select one of the channels that must be configured 0 (IPV), 1 (UPV) or 2 (UDC)
3) Depending on the type of sensor, choose between:

a) The single-ended, low-impedance input (100 Ω). This choice is recommended with
most of the LEM sensors.

b) The differential, high-impedance input (3kΩ). This choice is recommended in most
other cases. Attention must however be paid to the fact that these inputs are NOT gal-
vanically isolated.

4) Choose between the gains in order to maximize the use of the full scale of the analog-to-
digital converter [-10V ; +10V]. The employed values are here 4 (IPV), 8 (UPV) and 8 (UDC).

5) Activate or deactivate the pre-filtering on each input. It is chosen here not to use any filters
(which are then completely bypassed) and to rely on a perfectly synchronous sampling of
the measured quantities.

6) When applicable, choose the cutting frequency of the filters. The latter are irrelevant here as
the filters are disabled.

7) Set the safety thresholds at appropriate values with respect to the safety of both the user
and the application. These thresholds are taken into account at the input of the AD convert-
ers. The proposed values for the present case are indicated in Table 2. They account for the
sensitivity of the employed sensors, which are characterized in Table 3.

8) Activate the safety thresholds.
9) Save the configured parameters.
10) Repeat the procedure for the other channels.

Name Max. limit Min. limit Output of the sensors Limits on the BoomBox Channel #

IPV 10A -2A [-1mA ; 5mA] [-0.4V ; 2.0V] 0
UPV 25V -5V [-0.27mA ; 1.33mA] [-0.2V ; 1.1V] 1
UDC 120V -5V [-0.27mA ; 6.38mA] [-0.2V ; 5.1V] 2

Table 2 : Safety thresholds programmed on the BoomBox.

Sensor Type of output Nominal sensitivity Typ. uncalibrated accuracy

LEM - LV25-P Current, single-ended 250 / RIN [V/V] ±1%
LEM - LAH50-P Current, single-ended 50 [mV/A] ±0.25% @25°C
LEM - LAH50-NP/SP1 Current, single-ended 100 [mV/A] ±0.25% @25°C
LEM - LA25-NP Current, single-ended 100 [mV/A] ±0.5%

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

3

Sensor Type of output Nominal sensitivity Typ. uncalibrated accuracy

IX - AMC1200 Voltage, balanced diff. 5.4 [mV/V] ±1.8%
IX - ACS709 Voltage, balanced diff. 90 [mV/A] ±5%

Table 3 : Parameters of some sensors commonly used along with the BoomBox.

3 SOFTWARE CONFIGURATION
The configuration of the BoomBox’s software is achieved through several ad-hoc routines that
are presented hereafter. These routines are typically invoked during the initialization of the
application, namely during the start-up of the BoomBox, i.e. in the UserInit() routine.

3.a CONFIGURATION OF THE PWMS
Each pair of complimentary PWM signals is controlled by its own modulator, which can be
assigned/routed to any of the 4 frequency generators available in the BoomBox. Hence, the
configuration of a PWM modulator is typically achieved in two steps:

 Configuration of the frequency generator
The following code allows to configure the frequency generator #3 with a period set to
SWITCHING_PERIOD (here 100μs). In fact, the second argument of the routine is a number of
clock ticks on a 30Mhz time basis. SWITCHING_PERIOD and FPGA_CLK_PERIOD are pre-compiler
constants (#define) defined in user.h.

 SetFreqGenPeriod(3, (int)(SWITCHING_PERIOD/FPGA_CLK_PERIOD));

 Configuration of the PWM modulator (i.e. of the PWM channel)
The following line configures PWM #0 such that it is triggered by the frequency generator #3
(defined above). It also selects a SAWTOOTH-type carrier and a dead-time of 400ns between the
complimentary signals. This last argument is also defined in clock ticks at 30Mhz.

 ConfigPWMChannel(0, 3, SAWTOOTH, (int)(400e-9/FPGA_CLK_PERIOD))

The following instruction defines PWM #0 as an active channel. This means that once the PWM
outputs of the BoomBox are enabled (the command enable is passed in the command-line
interface), the PWM outputs are directly produced. In more complex applications, or with several
converters, this option allows to activate the PWM channels independently from each other, and
independently from the main unblocking/blocking (enable/disable) of the gating signals.

 ActivatePWMChannel(0); // Activate the PWM #0 channel

Finally, the following line imposes a relative phase of 0 degree on PWM #0 with respect to its
clock source (namely FreqGen #3). This is useful in multi-phase systems, but is irrelevant for the
system considered here. The function call could hence be omitted here.

 SetPWMPhase(0, 0.0); // 0.0 degrees between FG #3 and PWM #0

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

4

3.b CONFIGURATION OF THE ANALOG-TO-DIGITAL CONVERSION
Directly usable values can be made available in the control code, provided that the analog-to-
digital conversion is also properly configured on the software side. In order to configure a given
ADC channel, the routine SetADCAdjustements() must be invoked and fed with a sensitivity and
an offset parameters corresponding to the conversion between the raw 16 bits conversion result
(signed integer) and a meaningful floating-point quantity. Hence, when an ADC channel is read,
the routine GetADC() directly returns a convenient quantity, according to:

y ax b 

where y is the returned value, x the raw conversion result, and a and b the sensitivity and offset
configured through SetADCAdjustments(), respectively. The sensitivity a of the entire conversion
chain can be determined from the parameters of the employed sensors according to:

  
1 32768

10FEs G
a

where s is the sensitivity of the sensor and GFE is the gain programmed on the frontend of the
BoomBox. In the proposed example, the following parameters must be used:

 SetADCAdjustments(0, 6.10e-3/4.0, 0.0); // Nominal sensitivity and x4 gain (Ipv)
 SetADCAdjustments(1, 57.4e-3/8.0, 0.0); // Nominal sensitivity and x8 gain (Upv)
 SetADCAdjustments(2, 113e-3/8.0, 0.0); // Nominal sensitivity and x8 gain (Udc)

The configuration of the sampling allows to define at which instant the measurements must be
taken. In the proposed application, the sampling can advantageously be achieved in the middle
of the switching period, that is to say at the exact instant when the current ripple is equal to its
average value. In order to do so, the sampling is based on the frequency generator #3 with a
phase-shift of 180°. The corresponding instruction is the following:

 ConfigSampling(3, 0.5); // Phase of 180° between FG #3 and sampling

3.c CONFIGURATION OF THE INTERRUPTS
As suggested earlier, it is proposed to configure two interrupts, hence defining two distinct
sample-based control mechanisms:

 Fast interrupt
A fast interrupt is dedicated to the execution of the current control. The following code line
configures the primary user-level service routine UserInterrupt1() to be triggered by the interrupt
source #1 (there are two interrupt lines between the FPGA and the DSP). Additionally, this
function also configures the interrupt source #1 to be mapped to the frequency generator #3
(that which also serves as the time base for the unique PWM modulator that is being used). The
relative phase with respect to that clock is chosen to be 0 degrees (the interrupt is triggered at
the beginning of the switching period) and no postscaling is used (each and every period of
FreqGen #3 produces a control interrupt).

 RegisterExt1Interrupt(&UserInterrupt1, 3, 0.0, 0);

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

5

 Slow interrupt
A secondary user-level interrupt service routine such as UserInterrupt2() is dedicated to the
execution of the MPPT algorithm. With the following line, this routine is mapped on the internal
CPU timer, which is configured to generate interrupts every 10’000μs.

 RegisterTimerInterrupt(&UserInterrupt2, 10000);

4 IMPLEMENTATION OF THE CONTROL APPLICATION
In this example, the overall amount of code is relatively limited. Therefore, the corresponding
control operation can be directly coded in the user.c/.h files.

4.a DEFINITION OF THE USER STATE MACHINE
Being given the simplicity of this application example, no state machine is implemented. This is
why PWM #0 is directly activated during the initialization. Hence, as soon as the BoomBox starts,
the code contained in both user interrupts is directly executed. However, the PWM gating signals
will not be physically produced until the enable command has been passed through the
command-line interface.

4.b CONFIGURATION AND EXECUTION OF THE CURRENT CONTROL
Numerous useful routines that are common in the digital control of power electronic systems are
available in the API folder. Among them, various types of controllers are available. For instance,
the closed-loop current control suggested in this tutorial can be set up using such routines in
only two steps:

 Instantiation and configuration
This step must be executed during the initialization phase (in UserInit()) and aims to create a
pseudo-object corresponding to a controller and to configure it properly. To do so, the following
code lines are necessary:

 PIDController Ipv_reg;
 ConfigPIDController(&Ipv_reg, Kp, Ki, Kd, 15, -15, SAMPLING_PERIOD, 10);

The exact definition of the prototype of this routine can be found in the file API/controllers.h.

It must be noted here that the variable Ipv_reg is inevitably a global variable, which is then
preferably instantiated in the beginning of the user.c file (or any other pseudo-class containing
the control routines).

 Execution
The step consists in executing repeatedly the control routine with a constant interrupt period. In
the present application, a recommended approach to invoke the current controlled is as follows:

 Epv = Upv - RunPIController(&Ipv_reg, Ipv_ref - Ipv);

It can be noted that several variants of controller structures are available (P, PI, I, PID) from a
unique pseudo-object. In other words, the configuration routine is the same, irrespectively of
what kind of controller the user desires to use.

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

6

4.c DEFINITION OF THE COMMANDS THAT ARE AVAILABLE TO THE USER
The command-line access offered by the BoomBox allows the user to pass specific commands to
the application, independently from the debugging interface available in CodeComposer Studio.
In addition to the blocking and release of the BoomBox (commands enable/disable), numerous
functions can be freely defined by the user. The definition of the available actions is made in the
cli_commands.c file.

In the present case, the available commands can be advantageously completed by:

a) setmppt, which is meant to activate or deactivate the MPPT algorithm (the command
setmppt 0 disables the MPPT, while the command setmppt 1 activates it).

b) setipv, which allows the user to define the setpoint for the current IPV (this obviously
implies that the MPPT must be inactive).

Practically, the configuration of these commands is achieved as follows:

1) Prototype the functions that will execute the chosen actions and be invoked through the
command-line interface. In the present case, there are namely:

 void SetMPPT(unsigned int argc, char *argv[]);
 void SetIpv(unsigned int argc, char *argv[]);

2) Associate the commands with the corresponding routines, in other words “register” the

above-defined routine among those that are available by the command-line. In order to do
so, the routine LoadCLIUserFunctions() must be completed with the following lines:

 fs_mkcmd_user("setmppt", SetMPPT);
 fs_mkcmd_user("setipv", SetIpv);

3) Define the exact content of these functions, i.e. define the actions the latter are supposed to

execute. An example is given hereafter:

 void SetIpv(unsigned int argc, char *argv[]){
 if (*argv[1] == '?'){
 printf("\nSet the PV current value (Ipv).");

printf("\nExample : setIpv 1.2");
 return;
 }
 Ipv_ref = atof(argv[1]);;
 }
 void SetMPPT(unsigned int argc, char *argv[]){
 if (*argv[1] == '?'){
 printf("\nSet the MPPT state. (1 to activate and 0 to deactivate)");
 printf("\nExample : setMPPT 1");
 return;
 }
 enable_MPPT = atoi(argv[1]);;
 }

Once defined, these actions are available in the virtual folder « user » of the BoomBox. The can be
invoked as presented in the following example:

user@boombox / > user

APPLICATION EXAMPLE

Boost converter with MPPT for photovoltaic application

7

user@boombox /user > enable
user@boombox /user > setipv 3.0
user@boombox /user > setmppt 1
user@boombox /user > disable

4.d DEFINITION OF THE FAST INTERRUPT SERVICE ROUTINE
The routine UserInterrupt1() typically begins with the necessary call to GetADC(). The exact
sampling instant is that previously configured through the call of the ConfigSampling() routine.
This corresponds to:

 Upv = GetADC(1); // Voltage on the PV panel
 Ipv = -GetADC(0); // PV panel current (sensor is positive outbound)
 Udc = GetADC(2); // DC bus voltage

Subsequently, the necessary control tasks may be executed and, finally, the modulation
parameters updated, as presented by the following lines. The new duty-cycle is here applied to
PWM 0 and this information transferred to the actual modulator, located in the FPGA:

 SetPWMDutyCycle(0, Epv/Udc); // Refresh the duty-cycle of PWM #0
 UpdatePWMData(); // Send the new PWM parameters to the FPGA

4.e DEFINITION OF THE SLOW INTERRUPT SERVICE ROUTINE
In order to continuously operate the solar panel at its maximum, the operating point must be
constantly adjusted along the voltage-current characteristic of the panel. A typical characteristic
is depicted in Figure 2 :

Figure 2 : Voltage-current characteristic of a photovoltaic solar panel (in red) and the corresponding profile of

extracted power (in blue).

A simple and effective technique allowing to constantly maximize the extracting power consists
in slightly perturbing the operating point and observing the corresponding effect on the
transferred power (perturb&observe approach). A possible implementation is presented and
commented in UserInterrupt2().

