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1 INTRODUCTION 
This tutorial describes the procedure to control a grid-tied single-phase inverter using the 
BoomBox control platform. The considered system is depicted in Figure 1. Its main electrical 
parameters are indicated in Table 1: 
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Figure 1 : Simplified electrical scheme of the considered system. 

Name Nom. value Specification Employed sensor Channel # 

Ug 50 VRMS  Grid voltage at the injection point LEM LV25-P 1 
Ig 20 ARMS Current injected in the grid LAH50-P 0 
UDC 100 VDC DC bus voltage (fixed) LEM LV25-P 3 
fS 20 kHz Switching frequency N.A. N.A. 
L 0.5 mH Smoothing inductor N.A. N.A. 
f 50Hz Grid frequency N.A. N.A. 

Table 1 : Electrical parameters of the studied system. 

The approach presented in this document – and detailed in the code example – consists in 
controlling the current exchanged between the inverter and an AC grid using a rotating 
reference frame (dq-type) synchronized with the grid frequency. The attractiveness of this 
approach is related to its excellent capability to decouple the control of the active and reactive 
power flows. Additionally, the mechanisms commonly used in three-phase applications can be 
re-used directly. On the other hand, this approach requires the emulate the components that are 
missing compared to a three-phase system, hence justifying the use of a dedicated emulation 
principle name fictive-axis emulation [2]. The overall strategy is depicted in Figure 2. 

Furthermore, apart from the control itself, the coordinate transformations needed by this 
approach require a precise information on the phase angle of the grid voltage, what motivates 
the use of a phase-locked loop (PLL), also visible in Figure 2. 
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Figure 2 : Complete control structure with fictive-axis emulation and dq-type current control. Source [2]. 

Alternative approaches are obviously possible, such as relying on a Proportional-Resonant (PR) 
controller placed in a stationary reference frame. This second possibility is widely described in [5]. 
Section 4.a addressing the implementation of the state machine will detail how other control 
strategies can easily be integrated to the user code. 

2 HARDWARE SET-UP 

2.a CONFIGURATION OF THE ANALOG INPUTS 
The analog input channels can be configured using the same procedure as described in the 
tutorial n°1 “Boost converter with MPPT for photovoltaic application”. Hence, for the present 
application, the parameters presented in Table 2 are proposed: 

Name Channel # Sensor Sensitivity Limits Bbox gain Bbox limits 

Ug 1  LEM LV25-P 250 / 47k [V/V] [-80V ; 80V] 8  [-3.4V ; 3.4V] 
Ig 0 LAH50-P 50 [mV/A] [-10A ; 10A] 4 [-2.0V ; 2.0V] 
UDC 3 LEM LV25-P 250 / 47k [V/V] [80V ; 120V] 8 [3.4V ; 5.1V] 

Table 2 : Recommended settings for the analog inputs. 
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3 SOFTWARE CONFIGURATION 

3.a CONFIGURATION OF THE PWMS 
As described in tutorial n°1, the configuration of the PWM modulators requires two steps: 

 Configuration of the frequency generator 
The following code configures the FreqGen #0 with a period defined by SWITCHING_PERIOD: 

 SetFreqGenPeriod(0, (int)(SWITCHING_PERIOD/FPGA_CLK_PERIOD)); 
 

 Configuration of the PWM modulators (i.e. of the PWM channels) 
The following code lines allow to use the above-configured frequency generator as the time 
base for PWM #0 and PWM #1. They also select a triangular carrier signal for the corresponding 
modulators, as well as a dead-time of 400ns: 

 ConfigPWMChannel(1, 0, TRIANGLE, (int)(400e-9/FPGA_CLK_PERIOD)); 
ConfigPWMChannel(2, 0, TRIANGLE, (int)(400e-9/FPGA_CLK_PERIOD)); 

 
The phase of both PWM channels (with respect to FreqGen #0) can be adjusted freely. In the 
present example, identical carriers lead to the generation of a 3-level voltage waveform at the 
output of the inverter. Alternatively, the use of an inverted carrier (INVTRIANGLE) or of a relative 
phase of 180° on the second channel leads to the generation of a 2-level voltage waveform only. 

 SetPWMPhase(1, 0.0); 
 SetPWMPhase(2, 0.0); 
 

Finally, in this example, the PWM channels are not immediately activated, because a state 
machine is specifically tasked to handle the various operating modes, and hence manage the 
activation of the PWM channels. 

3.b CONFIGURATION OF THE ANALOG-TO-DIGITAL CONVERSION 
As first described in the tutorial n°1, the analog-to-digital conversion must also be configured on 
the software side in order to directly exploit meaningful floating-point quantities in the user 
control routines. To this end, SetADCAdjustements() must be invoked during the initialization 
phase and be fed with the desired sensitivity and offset parameters. In the present example, the 
latter are as follows: 

 SetADCAdjustments(0, 6.10e-3/4, 0.0);  // Nominal sensitivity and x4 gain (Ig) 
 SetADCAdjustments(1, 57.4e-3/8, 0.0);  // Nominal sensitivity and x8 gain (Ug) 
 SetADCAdjustments(3, 57.4e-3/8, 0.0);  // Nominal sensitivity and x8 gain (Udc) 
 
In this application, the sampling can advantageously be achieved in the middle of the switching 
period, that is to say at the exact instant when the current – including its ripple – is equal to its 
sliding-average value. To do so, the sampling is configured in the middle of the period defined 
by the frequency generator #0 (the time base used for the PWMs as well): 

 ConfigSampling(0, 0.5); 
 



  
APPLICATION EXAMPLE 

Single-phase inverter connected to an alternating grid 

4 
 

3.c CONFIGURATION OF THE INTERRUPTS 
Unlike the example presented in the tutorial n°1, this application requires only one interrupt that 
can typically be mapped to the UserInterrupt1() service routine. This interrupt can typically be 
configured such that it is triggered at the beginning of the period defined by FreqGen #0 by 
means of the following function call: 

 RegisterExt1Interrupt(&UserInterrupt1, 0, 0.0, 0); 

4 IMPLEMENTATION OF THE CONTROL APPLICATION 

4.a DEFINITION OF THE USER STATE MACHINE 
In this application, several operating modes can be provided. For instance: 

1) The STANDBY mode corresponding to the idle state, i.e. when inverter is completely inactive. 
2) The CLOSEDLOOP mode, during which the current control is effective and the inverter is 

actually switching, provided that the PWM outputs have been released (the command ena-
ble has been passed in the command-line interface). 

3) The mode PASSIVELOAD, during which no closed-loop control is achieved. On the contrary, 
the modulation indices are generated directly such that they produce sinusoidal waveforms, 
irrespectively of any measurement. This mode may typically be useful in case of preliminary 
operation in a passive load and/or used for debug purposes. 

Obviously, depending on the application and the corresponding needs, other operating modes 
could be defined, corresponding to other control strategies (e.g. a PR-type current control in a 
stationary reference frame) or related to the operation of another converter (e.g. the boost of the 
tutorial n°1). 

In practice, these three operating modes are defined (in this example) using an enum type 
declared in user.h. The handling of these operating modes can typically be made by a state 
machine that will switch during each interrupt. These mechanisms can simply be implemented 
with a switch operator placed inside UserInterrupt1(). Part of the code is then executed different-
ly as a function of the desired operating mode. This mechanism will be further presented in 
section Erreur ! Source du renvoi introuvable.. 

Finally, in order to properly manage the transitions between the different state, it is generally 
recommended to use a specific routine such as SetOpMode() (already proposed in the code 
example). This routine is mainly responsible for executing the tasks related to the state transition. 
This typically includes the activation/deactivation of the PWM channels, the switching of relays 
(using the digital outputs of the BoomBox), or the modification/initialization of setpoints. An 
example is given hereafter: 

 switch (newmode){ 
     case STANDBY:  DeactivatePWMChannel(1);   
        DeactivatePWMChannel(2); 
        Ig_dq0_ref.real = 0.0; 
        Ig_dq0_ref.imaginary = 0.0; 
     break; 
     case CLOSEDLOOP: ActivatePWMChannel(1); 
           ActivatePWMChannel(2); 
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           break; 
     case PASSIVELOAD: ActivatePWMChannel(1); 
     ActivatePWMChannel(2); 
     break; 
  } 
  opmode = newmode; 
 } 
 

4.b DEFINITION OF THE MAIN INTERRUPT SERVICE ROUTINE 
As in numerous control applications, the main interrupt typically contains several steps: 

1) Retrieval of the measurements using GetADC(). The exact sampling instant is that configured 
earlier using ConfigSampling(). 

2) Execution of PLL(s) and, in the present case, of the fictive axis emulation. 
3) Switch between the possible operating modes. The main ones typically contain: 

a) Coordinate transformations. In this example, only the following two lines are necessary, 
involving pre-defined routines that are available in the API folder: 

 ABG2DQ0(&Ug_dq0, &Ug_ABG, theta); // Grid voltage 
 ABG2DQ0(&Ig_dq0, &Ig_ABG, theta); // Grid current 
 

b) Execution of control algorithms. In CLOSEDLOOP mode, this mainly involves the execu-
tion of the current controllers. 

c) Inverse coordinate transformations. In the present case, only the converter EMF must be 
transformed back to the stationary reference frame : 
DQ02ABG(&Eg_ABG, &Eg_dq0, theta); // Compute the converter EMF in station. R. F. 
 

d) Computation and update of the modulation indices. In CLOSEDLOOP mode, this task 
corresponds to the two following code lines: 

duty_a = 0.5 + 0.5* (Eg_ABG.real/Udc); 
 duty_b = 0.5 - 0.5* (Eg_ABG.real/Udc); 
 

Alternatively, in OPENLOOP mode, the same task is achieved entirely a priori by means of 
the following instructions: 

duty_a = 0.5 + moddepth * sin(theta); 
duty_b = 0.5 - moddepth * sin(theta); 

 
4) Sending of the updated modulation indices to the FPGA-implemented modulators. 
5) Update of the state machine (next state logic). 

As proposed in the code example, it can be noted that the next state is determined/computed 
directly inside the main section of the interrupt service routine. This is a reasonable choice since 
no automated transition is being tested (no change of state is achieved automatically). However, 
provided that such event must take place autonomously (e.g. as soon as a pre-charge is 
complete), it is generally recommended to set up a separate routine to process the next state 
logic and request the state transition. 
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4.c DEFINITION OF THE COMMANDS THAT ARE AVAILABLE TO THE USER 
In addition to the blocking and release of the PWM signals (commands enable/disable), the 
command-line access of the BoomBox allows the user to freely define numerous actions that can 
be executed independently from CodeComposer Studio. The definition of these actions is made 
in the cli_commands.c file. 

For the present example, the existing commands can be completed with the following actions: 

a) start, which is meant to switch to CLOSEDLOOP mode. 
b) stop, which is meant to switch to STANDBY mode. 
c) opmode, which is meant to force the change of an operating state. 
d) setid, which aims to set the setvalue for the current on the direct axis. 
e) setiq, which aims to set the setvalue for the current on the quadrature axis. 

As previously described in tutorial n°1, the configuration of these commands is made as follows: 

1) Prototype the routines that will achieve the desired actions once invoked through the 
command-line interface. In the present case, the following routines are necessary: 

 void DoStart(unsigned int argc, char *argv[]); 
void DoStop(unsigned int argc, char *argv[]); 
void DoOpMode(unsigned int argc, char *argv[]); 
void SetId(unsigned int argc, char *argv[]); 
void SetIq(unsigned int argc, char *argv[]); 

 
2) Associate the commands with the corresponding routines. To do so, the following lines must 

be added to LoadCLIUserFunctions() : 

 fs_mkcmd_user("start", DoStart); 
 fs_mkcmd_user("stop", DoStop); 
 fs_mkcmd_user("opmode", DoOpMode); 
 fs_mkcmd_user("setid", SetId); 
 fs_mkcmd_user("setiq", SetIq); 
 
3) Define the exact content of the routines, in other words define the actions that these 

routines must achieve. The details can be found in the corresponding code example. 

5 IMPLEMENTATION OF THE CLOSED-LOOP CONTROL 

5.a CONFIGURATION AND EXECUTION OF THE CURRENT CONTROL 
Numerous pre-defined control-related routines are available in the API folder, such as various 
controllers and PLLs. For the current control suggested by this tutorial, two PI controllers are 
necessary. Their use involves two steps: 

 Instantiation and configuration 
This step must be executed during the initialization phase and aims to create the corresponding 
pseudo-objects and to configure them properly. To do so, the following lines are necessary: 

 PIDController Id_reg, Iq_reg; 
 ConfigPIDController(&Id_reg, Kp, Ki, 0, 30.0, -30.0, SAMPLING_PERIOD, 10); 
 ConfigPIDController(&Iq_reg, Kp, Ki, 0, 30.0, -30.0, SAMPLING_PERIOD, 10); 
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 Execution 
This step consists in executing repeatedly the control routine with a constant interrupt period. In 
the present application, a recommended approach to invoke the current controllers as follows: 

 Eg_dq0.real =   Ug_dq0.real  
+ RunPIController(&Id_reg, Ig_dq0_ref.real - Ig_dq0.real) 
- OMEGA*LGRID*Ig_dq0.imaginary; 

Eg_dq0.imaginary =  Ug_dq0.imaginary  
+ RunPIController(&Iq_reg, Ig_dq0_ref.imaginary - 
Ig_dq0.imaginary)  
+ OMEGA*LGRID*Ig_dq0.real; 
 

5.b CONFIGURATION AND EXECUTION OF THE PLL 
As for the controllers, several variants of PLLs are available in the API folder. For instance, the 
implementation of a single-phase PLL based on a second-order generalized integrator (SOGI) 
can be achieved through the following steps: 

 Instantiation and configuration 
Similarly to the configuration of the controllers, a pseudo-object must be built and configured 
during the initialization phase using the following code lines: 

 SOGIPLL1Parameters SOGIPLL; 
ConfigSOGIPLL1(&SOGIPLL, 10.0, 0.5, 0.1, OMEGA, SAMPLING_PERIOD); 

 
It is worth noting here that SOGIPLL is a global variable, which should be instantiated in the 
beginning of user.c (or another pseudo-class containing the control mechanisms). 

In the second line, the parameters 10.0 and 5.0 correspond to the gains of the PI controller that is 
used to lock the phase loop. The parameter 0.1 corresponds to the gain of the SOGI. The exact 
definition of these routines can be found in API/PLLs.h. 

 Execution 
This step consists in executing repeatedly the controller contained in the PLL and extracting the 
angle of the grid voltage theta. This is hence a task which must typically be achieved in UserIn-
terrupt1() as suggested by the following line: 

 theta = RunSOGIPLL1(&SOGIPLL,&Ug_ABG,Ug_measured); 
 

5.c CONFIGURATION AND EXECUTION OF THE FAE 
The routines corresponding to this functional bloc are available in the API folder. Once again, 
two steps are necessary: 

 Instantiation and configuration 
As for the other pseudo-objects, this step must typically take place in UserInit(), by instantiating a 
pseudo-structure and calling a configuration routine: 

 FAEParameters FAE; 
ConfigFAE(&FAE, RGRID, LGRID, SAMPLING_PERIOD); 
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The employed parameters RGRID and LGRID are here used to intuitively configure the transfer 
function of the FAE bloc. These are pre-compiler constants defined in user.h. The exact definition 
of these routines can be found in API/PLLs.h. 

 Execution 
The execution of the FAE bloc is achieved at the same time as the retrieval of the measurements 
and aims to emulate the missing axis β of the grid current. This hence typically involves: 

 Ig_ABG.imaginary = RunFAE(&FAE, Eg_ABG.imaginary - Ug_ABG.imaginary); 
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