

Written by: nicolas.cherix@imperix.ch
 Revision/release date: A, 2015.02.09

Tutorial n°2

GRID-TIED SINGLE-PHASE INVERTER
Written by: imperix SA, Rte. de l’Industrie 17, 1950 Sion, Switzerland
 Nicolas Cherix <nicolas.cherix@imperix.ch>
Addressed topics: – Use of the code libraries
 – Implementation of a basic state machine

1 INTRODUCTION
This tutorial describes the procedure to control a grid-tied single-phase inverter using the
BoomBox control platform. The considered system is depicted in Figure 1. Its main electrical
parameters are indicated in Table 1:

UDC

S1

S2

L

Ug

S3

S4

Eg

Ig

Figure 1 : Simplified electrical scheme of the considered system.

Name Nom. value Specification Employed sensor Channel #

Ug 50 VRMS Grid voltage at the injection point LEM LV25-P 1
Ig 20 ARMS Current injected in the grid LAH50-P 0
UDC 100 VDC DC bus voltage (fixed) LEM LV25-P 3
fS 20 kHz Switching frequency N.A. N.A.
L 0.5 mH Smoothing inductor N.A. N.A.
f 50Hz Grid frequency N.A. N.A.

Table 1 : Electrical parameters of the studied system.

The approach presented in this document – and detailed in the code example – consists in
controlling the current exchanged between the inverter and an AC grid using a rotating
reference frame (dq-type) synchronized with the grid frequency. The attractiveness of this
approach is related to its excellent capability to decouple the control of the active and reactive
power flows. Additionally, the mechanisms commonly used in three-phase applications can be
re-used directly. On the other hand, this approach requires the emulate the components that are
missing compared to a three-phase system, hence justifying the use of a dedicated emulation
principle name fictive-axis emulation [2]. The overall strategy is depicted in Figure 2.

Furthermore, apart from the control itself, the coordinate transformations needed by this
approach require a precise information on the phase angle of the grid voltage, what motivates
the use of a phase-locked loop (PLL), also visible in Figure 2.

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

2

Figure 2 : Complete control structure with fictive-axis emulation and dq-type current control. Source [2].

Alternative approaches are obviously possible, such as relying on a Proportional-Resonant (PR)
controller placed in a stationary reference frame. This second possibility is widely described in [5].
Section 4.a addressing the implementation of the state machine will detail how other control
strategies can easily be integrated to the user code.

2 HARDWARE SET-UP

2.a CONFIGURATION OF THE ANALOG INPUTS
The analog input channels can be configured using the same procedure as described in the
tutorial n°1 “Boost converter with MPPT for photovoltaic application”. Hence, for the present
application, the parameters presented in Table 2 are proposed:

Name Channel # Sensor Sensitivity Limits Bbox gain Bbox limits

Ug 1 LEM LV25-P 250 / 47k [V/V] [-80V ; 80V] 8 [-3.4V ; 3.4V]
Ig 0 LAH50-P 50 [mV/A] [-10A ; 10A] 4 [-2.0V ; 2.0V]
UDC 3 LEM LV25-P 250 / 47k [V/V] [80V ; 120V] 8 [3.4V ; 5.1V]

Table 2 : Recommended settings for the analog inputs.

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

3

3 SOFTWARE CONFIGURATION

3.a CONFIGURATION OF THE PWMS
As described in tutorial n°1, the configuration of the PWM modulators requires two steps:

 Configuration of the frequency generator
The following code configures the FreqGen #0 with a period defined by SWITCHING_PERIOD:

 SetFreqGenPeriod(0, (int)(SWITCHING_PERIOD/FPGA_CLK_PERIOD));

 Configuration of the PWM modulators (i.e. of the PWM channels)
The following code lines allow to use the above-configured frequency generator as the time
base for PWM #0 and PWM #1. They also select a triangular carrier signal for the corresponding
modulators, as well as a dead-time of 400ns:

 ConfigPWMChannel(1, 0, TRIANGLE, (int)(400e-9/FPGA_CLK_PERIOD));
ConfigPWMChannel(2, 0, TRIANGLE, (int)(400e-9/FPGA_CLK_PERIOD));

The phase of both PWM channels (with respect to FreqGen #0) can be adjusted freely. In the
present example, identical carriers lead to the generation of a 3-level voltage waveform at the
output of the inverter. Alternatively, the use of an inverted carrier (INVTRIANGLE) or of a relative
phase of 180° on the second channel leads to the generation of a 2-level voltage waveform only.

 SetPWMPhase(1, 0.0);
 SetPWMPhase(2, 0.0);

Finally, in this example, the PWM channels are not immediately activated, because a state
machine is specifically tasked to handle the various operating modes, and hence manage the
activation of the PWM channels.

3.b CONFIGURATION OF THE ANALOG-TO-DIGITAL CONVERSION
As first described in the tutorial n°1, the analog-to-digital conversion must also be configured on
the software side in order to directly exploit meaningful floating-point quantities in the user
control routines. To this end, SetADCAdjustements() must be invoked during the initialization
phase and be fed with the desired sensitivity and offset parameters. In the present example, the
latter are as follows:

 SetADCAdjustments(0, 6.10e-3/4, 0.0); // Nominal sensitivity and x4 gain (Ig)
 SetADCAdjustments(1, 57.4e-3/8, 0.0); // Nominal sensitivity and x8 gain (Ug)
 SetADCAdjustments(3, 57.4e-3/8, 0.0); // Nominal sensitivity and x8 gain (Udc)

In this application, the sampling can advantageously be achieved in the middle of the switching
period, that is to say at the exact instant when the current – including its ripple – is equal to its
sliding-average value. To do so, the sampling is configured in the middle of the period defined
by the frequency generator #0 (the time base used for the PWMs as well):

 ConfigSampling(0, 0.5);

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

4

3.c CONFIGURATION OF THE INTERRUPTS
Unlike the example presented in the tutorial n°1, this application requires only one interrupt that
can typically be mapped to the UserInterrupt1() service routine. This interrupt can typically be
configured such that it is triggered at the beginning of the period defined by FreqGen #0 by
means of the following function call:

 RegisterExt1Interrupt(&UserInterrupt1, 0, 0.0, 0);

4 IMPLEMENTATION OF THE CONTROL APPLICATION

4.a DEFINITION OF THE USER STATE MACHINE
In this application, several operating modes can be provided. For instance:

1) The STANDBY mode corresponding to the idle state, i.e. when inverter is completely inactive.
2) The CLOSEDLOOP mode, during which the current control is effective and the inverter is

actually switching, provided that the PWM outputs have been released (the command ena-
ble has been passed in the command-line interface).

3) The mode PASSIVELOAD, during which no closed-loop control is achieved. On the contrary,
the modulation indices are generated directly such that they produce sinusoidal waveforms,
irrespectively of any measurement. This mode may typically be useful in case of preliminary
operation in a passive load and/or used for debug purposes.

Obviously, depending on the application and the corresponding needs, other operating modes
could be defined, corresponding to other control strategies (e.g. a PR-type current control in a
stationary reference frame) or related to the operation of another converter (e.g. the boost of the
tutorial n°1).

In practice, these three operating modes are defined (in this example) using an enum type
declared in user.h. The handling of these operating modes can typically be made by a state
machine that will switch during each interrupt. These mechanisms can simply be implemented
with a switch operator placed inside UserInterrupt1(). Part of the code is then executed different-
ly as a function of the desired operating mode. This mechanism will be further presented in
section Erreur ! Source du renvoi introuvable..

Finally, in order to properly manage the transitions between the different state, it is generally
recommended to use a specific routine such as SetOpMode() (already proposed in the code
example). This routine is mainly responsible for executing the tasks related to the state transition.
This typically includes the activation/deactivation of the PWM channels, the switching of relays
(using the digital outputs of the BoomBox), or the modification/initialization of setpoints. An
example is given hereafter:

 switch (newmode){
 case STANDBY: DeactivatePWMChannel(1);
 DeactivatePWMChannel(2);
 Ig_dq0_ref.real = 0.0;
 Ig_dq0_ref.imaginary = 0.0;
 break;
 case CLOSEDLOOP: ActivatePWMChannel(1);
 ActivatePWMChannel(2);

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

5

 break;
 case PASSIVELOAD: ActivatePWMChannel(1);
 ActivatePWMChannel(2);
 break;
 }
 opmode = newmode;
 }

4.b DEFINITION OF THE MAIN INTERRUPT SERVICE ROUTINE
As in numerous control applications, the main interrupt typically contains several steps:

1) Retrieval of the measurements using GetADC(). The exact sampling instant is that configured
earlier using ConfigSampling().

2) Execution of PLL(s) and, in the present case, of the fictive axis emulation.
3) Switch between the possible operating modes. The main ones typically contain:

a) Coordinate transformations. In this example, only the following two lines are necessary,
involving pre-defined routines that are available in the API folder:

 ABG2DQ0(&Ug_dq0, &Ug_ABG, theta); // Grid voltage
 ABG2DQ0(&Ig_dq0, &Ig_ABG, theta); // Grid current

b) Execution of control algorithms. In CLOSEDLOOP mode, this mainly involves the execu-
tion of the current controllers.

c) Inverse coordinate transformations. In the present case, only the converter EMF must be
transformed back to the stationary reference frame :
DQ02ABG(&Eg_ABG, &Eg_dq0, theta); // Compute the converter EMF in station. R. F.

d) Computation and update of the modulation indices. In CLOSEDLOOP mode, this task
corresponds to the two following code lines:

duty_a = 0.5 + 0.5* (Eg_ABG.real/Udc);
 duty_b = 0.5 - 0.5* (Eg_ABG.real/Udc);

Alternatively, in OPENLOOP mode, the same task is achieved entirely a priori by means of
the following instructions:

duty_a = 0.5 + moddepth * sin(theta);
duty_b = 0.5 - moddepth * sin(theta);

4) Sending of the updated modulation indices to the FPGA-implemented modulators.
5) Update of the state machine (next state logic).

As proposed in the code example, it can be noted that the next state is determined/computed
directly inside the main section of the interrupt service routine. This is a reasonable choice since
no automated transition is being tested (no change of state is achieved automatically). However,
provided that such event must take place autonomously (e.g. as soon as a pre-charge is
complete), it is generally recommended to set up a separate routine to process the next state
logic and request the state transition.

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

6

4.c DEFINITION OF THE COMMANDS THAT ARE AVAILABLE TO THE USER
In addition to the blocking and release of the PWM signals (commands enable/disable), the
command-line access of the BoomBox allows the user to freely define numerous actions that can
be executed independently from CodeComposer Studio. The definition of these actions is made
in the cli_commands.c file.

For the present example, the existing commands can be completed with the following actions:

a) start, which is meant to switch to CLOSEDLOOP mode.
b) stop, which is meant to switch to STANDBY mode.
c) opmode, which is meant to force the change of an operating state.
d) setid, which aims to set the setvalue for the current on the direct axis.
e) setiq, which aims to set the setvalue for the current on the quadrature axis.

As previously described in tutorial n°1, the configuration of these commands is made as follows:

1) Prototype the routines that will achieve the desired actions once invoked through the
command-line interface. In the present case, the following routines are necessary:

 void DoStart(unsigned int argc, char *argv[]);
void DoStop(unsigned int argc, char *argv[]);
void DoOpMode(unsigned int argc, char *argv[]);
void SetId(unsigned int argc, char *argv[]);
void SetIq(unsigned int argc, char *argv[]);

2) Associate the commands with the corresponding routines. To do so, the following lines must

be added to LoadCLIUserFunctions() :

 fs_mkcmd_user("start", DoStart);
 fs_mkcmd_user("stop", DoStop);
 fs_mkcmd_user("opmode", DoOpMode);
 fs_mkcmd_user("setid", SetId);
 fs_mkcmd_user("setiq", SetIq);

3) Define the exact content of the routines, in other words define the actions that these

routines must achieve. The details can be found in the corresponding code example.

5 IMPLEMENTATION OF THE CLOSED-LOOP CONTROL

5.a CONFIGURATION AND EXECUTION OF THE CURRENT CONTROL
Numerous pre-defined control-related routines are available in the API folder, such as various
controllers and PLLs. For the current control suggested by this tutorial, two PI controllers are
necessary. Their use involves two steps:

 Instantiation and configuration
This step must be executed during the initialization phase and aims to create the corresponding
pseudo-objects and to configure them properly. To do so, the following lines are necessary:

 PIDController Id_reg, Iq_reg;
 ConfigPIDController(&Id_reg, Kp, Ki, 0, 30.0, -30.0, SAMPLING_PERIOD, 10);
 ConfigPIDController(&Iq_reg, Kp, Ki, 0, 30.0, -30.0, SAMPLING_PERIOD, 10);

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

7

 Execution
This step consists in executing repeatedly the control routine with a constant interrupt period. In
the present application, a recommended approach to invoke the current controllers as follows:

 Eg_dq0.real = Ug_dq0.real
+ RunPIController(&Id_reg, Ig_dq0_ref.real - Ig_dq0.real)
- OMEGA*LGRID*Ig_dq0.imaginary;

Eg_dq0.imaginary = Ug_dq0.imaginary
+ RunPIController(&Iq_reg, Ig_dq0_ref.imaginary -
Ig_dq0.imaginary)
+ OMEGA*LGRID*Ig_dq0.real;

5.b CONFIGURATION AND EXECUTION OF THE PLL
As for the controllers, several variants of PLLs are available in the API folder. For instance, the
implementation of a single-phase PLL based on a second-order generalized integrator (SOGI)
can be achieved through the following steps:

 Instantiation and configuration
Similarly to the configuration of the controllers, a pseudo-object must be built and configured
during the initialization phase using the following code lines:

 SOGIPLL1Parameters SOGIPLL;
ConfigSOGIPLL1(&SOGIPLL, 10.0, 0.5, 0.1, OMEGA, SAMPLING_PERIOD);

It is worth noting here that SOGIPLL is a global variable, which should be instantiated in the
beginning of user.c (or another pseudo-class containing the control mechanisms).

In the second line, the parameters 10.0 and 5.0 correspond to the gains of the PI controller that is
used to lock the phase loop. The parameter 0.1 corresponds to the gain of the SOGI. The exact
definition of these routines can be found in API/PLLs.h.

 Execution
This step consists in executing repeatedly the controller contained in the PLL and extracting the
angle of the grid voltage theta. This is hence a task which must typically be achieved in UserIn-
terrupt1() as suggested by the following line:

 theta = RunSOGIPLL1(&SOGIPLL,&Ug_ABG,Ug_measured);

5.c CONFIGURATION AND EXECUTION OF THE FAE
The routines corresponding to this functional bloc are available in the API folder. Once again,
two steps are necessary:

 Instantiation and configuration
As for the other pseudo-objects, this step must typically take place in UserInit(), by instantiating a
pseudo-structure and calling a configuration routine:

 FAEParameters FAE;
ConfigFAE(&FAE, RGRID, LGRID, SAMPLING_PERIOD);

APPLICATION EXAMPLE

Single-phase inverter connected to an alternating grid

8

The employed parameters RGRID and LGRID are here used to intuitively configure the transfer
function of the FAE bloc. These are pre-compiler constants defined in user.h. The exact definition
of these routines can be found in API/PLLs.h.

 Execution
The execution of the FAE bloc is achieved at the same time as the retrieval of the measurements
and aims to emulate the missing axis β of the grid current. This hence typically involves:

 Ig_ABG.imaginary = RunFAE(&FAE, Eg_ABG.imaginary - Ug_ABG.imaginary);

6 REFERENCES
[1] B. Bahrani, S. Kenzelmann and A. Rufer, “Multivariable-PI-based dq current control of voltage source

converters with superior axis decoupling capability,” in IEEE Trans. Ind. Electron., Vol. 58, N° 7, Jul. 2011.

[2] B. Bahrani, A. Rufer, S. Kenzelmann and L. Lopes, “Vector control of single-phase voltage-source
converters based on fictive-axis emulation,” in IEEE Trans. Ind. Appl., Vol. 47, N° 2, Apr. 2011.

[3] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “A new single-phase PLL structure based on a second-order
generalized integrator,” in Proc. PESC Conf., Rhodos, Greece, June 2006.

[4] F.J. Rodríguez, E. Bueno, M. Aredes, L.G.B. Rolim, F.A.S. Neves and M.C. Cavalcanti, “Discrete-time
implementation of second order generalized integrators for grid converters,” in Proc. IECON Conference,
Orlando, Nov. 2008.

[5] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional resonant controllers and filters for grid-
connected voltage-source converters,” in IEE Proc. on Electr. Power Appl., Vol. 153, N°. 5, Sep. 2006.

