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Tutorial n°3 

GRID-TIED 3-PHASE SOLAR INVERTER  
Written by: imperix SA, Rte. de l’Industrie 17, 1950 Sion, Switzerland 
 Nicolas Cherix <nicolas.cherix@imperix.ch> 
Addressed topics:  Use of the code libraries 
  Implementation of a basic state machine 
  Association with Typhoon HIL emulators 
 

1 INTRODUCTION 
This tutorial presents a possible control implementation for a three-phase grid-tied inverter using 
the BoomBox control platform. The considered system is depicted in Figure 1. Its main electrical 
parameters are shown in Table 1: 

 
Figure 1 : Simplified electrical scheme of the considered system. 

 
Figure 2 : Picture of a test setup using a Typhoon HIL400, emulating the power electronics converters. Only one 

BoomBox is utilized in the presented example. 
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Name Nom. value Specification Employed sensor Channel # 

Ug 230 VRMS (l-n) Grid voltage (line-to-neutral) IX-DIN800V 5, 6, 7 
Ig 30 ARMS Current injected into the grid (phase) IX-DIN50A 2, 3, 4 
UDC 650 VDC DC bus voltage IX-DIN800V 10 
UPV1,2 350-650 V Voltage(s) on the photovoltaic panels IX-DIN800V 8, 9 
IPV1,2 20A Current(s) exctacted from the PV panels IX-DIN50A 0, 1 
fS 4 kHz Switching frequency N.A. N.A. 
Lg 4 mH Filtering inductor N.A. N.A. 
Lpv 4 mH Filtering inductor N.A. N.A. 

Table 1 : Electrical parameters of the studied system. 

The proposed control strategy controls the grid current in a rotating reference frame (DQ-type) 
that is synchronized with the grid voltage. This synchronization is achieved by a software phase-
locked loop (PLL). This conventional approach is well described in [1]. The equivalent scheme is 
shown in Figure 2: 

 
Figure 3 : Implemented control strategy for the three-phase inverter. Source [1]. 

Additionally, both photovoltaic strings rely on a PI-type current control, the two current setpoints 
being defined by a superposed Maximum Point Point Tracking (MPPT) algorithm that uses a 
perturb-and-observe approach. 

In this example, all functional blocs constituting the control implementations are directly based 
on the pre-written control libraries existing in the BoomBox development environment. This 
shows that the control implementation of such a power conversion structure can be easily 
achieved, thanks to the BoomBox development environment.  
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2 HARDWARE SET-UP 
When associated to an emulation device such as a Hardware In-The-Loop (HIL) simulator, the set-
up is trivial. The BoomBox simply needs to be connected to the emulator. For Typhoon HIL 
devices, the necessary cabling interface is even available among the BoomBox accessories. 

As presented in the previous tutorials, the BoomBox’s analog inputs depends on the measure-
ment sensors, which are here directly emulated by the HIL device. A possible configuration is 
given in Table 2. This approach guarantees a maximum compatibility with the final application 
by configuring the emulator so that the output gains for each measurement also emulates the 
final – and real – sensor. The configuration of the utilized Typhoon HIL 400 is shown in Table 3: 

Type # Channel Bbox Sensor (fictive) Sensitivity Limits Bbox gain Bbox limits 

Current 0 to 4 IX-DIN50A 100 [mV/A] Various 2.0 Various 
Voltage 5 to 10 IX-DIN800V 2.46 [mV/V] Various 4.0 Various 

Table 2 : Configuration parameters of the BoomBox (analog inputs). 

Type # Channel HIL Sensitivity to emulate Output gain of the emulator 

Current 1 to 5 100 [mV/A] ÷ 10 
Voltage 6 to 11 2.46 [mV/V] ÷ 407 

Table 3 : Configuration parameters of the Typhoon HIL 400 emulator (analog outputs). 

Note: The Typhoon HIL emulator HIL400 and HIL600 have their output voltage limited to ±5V, 
instead of ±10V for the newer generations HIL402 and HIL602. This particularity may impose 
additional restrictions that must be taken into account. 

3 SOFTWARE CONFIGURATION 

3.a CONFIGURATION OF THE TIME BASES 
As in tutorial n°1, this application makes use of two different times bases, which are associated 
with two distinct interrupts and service routines: 

1) A fast time basis, defining the switching, sampling and control frequency, here 4 kHz. 
2) A slow time basis, related to the execution of the MPPT algorithm, here 250 Hz. 

Subsequently, these two time bases are typically linked with service routines such as UserInter-
rupt1() and UserInterrupt2(), respectively. This approach is detailed hereafter: 

 SetFreqGenPeriod(0, (int)(SWITCHING_PERIOD/FPGA_CLK_PERIOD)); 
RegisterExt1Interrupt(&UserInterrupt1, 0, 0.0, 0);  // No post-scaling here 
 

 SetFreqGenPeriod(1, (int)(0.0005/FPGA_CLK_PERIOD)); 
 RegisterExt2Interrupt(&UserInterrupt2, 1, 0.0, 4);  // Period post-scaled by 2x4=8 
 
This example shows an important detail: indeed, as the ratio 0.0005/FPGA_CLK_PERIOD is 
greater than 65’535, it is unfortunately impossible to program a time basis that is slower than 457 
Hz on a ClockGen (16 bits counters). This motivates the configuration of a frequency of 2 kHz on 
the ClockGen #1, with a 8x post-division of the output clock. 
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3.b CONFIGURATION OF THE PULSE-WIDTH MODULATORS  
As in the tutorials n°1 and n°2, the pulse-width modulators (PWMs) can be directly mapped to 
the fast time-base (ClockGen #0, see above). The corresponding code is as follows: 

 ConfigPWMChannel(0, 0, TRIANGLE, (int)(600e-9/FPGA_CLK_PERIOD)); 
 ... 
 ConfigPWMChannel(4, 0, TRIANGLE, (int)(600e-9/FPGA_CLK_PERIOD));  
 
In this example, triangular carriers and 600µs deadtimes are implemented on all channels. Other 
configurations are of course possible. More information on this topic can be found in tutorial n°1. 

Besides, in this example, the PWM channels are not immediately activated, since a finite state 
machine is responsible for managing the various operating modes. The corresponding activation 
and deactivation is directly managed by the SetOpMode() routine which can be easily under-
stood from the code example. 

3.c CONFIGURATION OF THE ANALOG-TO-DIGITAL CONVERSION 
The AD conversion parameters can be configured as in tutorial n°1. This allows to directly exploit 
meaningful floating-point quantities at the user level. To this end, SetADCAdjustements() must be 
invoked during UserInit() similarly to the following code: 

 SetADCAdjustments(0, IX_DIN50A_GAIN/2.0, 0.0);  
... 

 SetADCAdjustments(10, IX_DIN800V_GAIN/4.0, 0.0); 
 
Finally, the sampling can be advantageously made in the middle of the switching period, i.e. at 
the exact instant when the current – including its ripple – is equal to its sliding-average value. To 
do so, the sampling is configured in the middle of the period defined by the ClockGen #0: 

 ConfigSampling(0, 0.5); 

4 IMPLEMENTATION OF THE CONTROL APPLICATION 

4.a DEFINITION OF THE USER STATE MACHINE 
In this application, several operating modes are established. Thanks to the use of a HIL emulator 
here, these modes may – or may not – correspond to realistic operating regimes, or may only be 
applicable to debug conditions. In this example, five operating modes are implemented: 

1) The STANDBY mode, corresponding to the idle state during which the entire power 
converter is completely inactive. 

2) The mode OPENLOOP, during which no closed-loop control is achieved. On the contrary, the 
modulation indices of the inverter are generated directly such that they produce sinusoidal 
waveforms, irrespectively of any measurement. This mode may typically be useful in case of 
preliminary operation in a passive load and/or used for debug purposes. 

3) The mode CURRENTONLY, which executes only the current control of the inverter. No 
control of the DC bus voltage is executed. This mode therefore requires that the HIL emula-
tor simulates a fixed voltage on the DC bus (e.g. by disconnecting the PV strings and placing 
a constant voltage source on the bus). 
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4) The mode BUSVOLTAGE, running the grid current control and the bus voltage control 
(cascade implementation). Unlike CURRENTONLY, this mode is only applicable when the bus 
is capacitive and not directly tied to a constant voltage source. 

5) The mode TRACKING, during which all closed-loop controls are executed. This mode 
therefore corresponds to all tasks achieved by BUSVOLTAGE, plus the control of the DC cur-
rents extracted from the PV strings.  

Obviously, depending on the application, other operating modes could be defined, correspond-
ing to other control strategies or different combinations of control mechanisms. 

4.b IMPLEMENTATION OF THE CLOSED-LOOP CONTROL 
In this example, the implementation of the closed-loop control tasks follows the same principles 
as previously described in tutorials n°1 and n°2. It extensively relies on the functions and objects 
which are pre-written and available in the API folder. 

4.c DEFINITION OF THE MAIN INTERRUPT SERVICE ROUTINE 
In this example, the following sequence of tasks is proposed for the main control interrupt. A first 
part is related to the control of the PV strings, while a second is dedicated to the inverter: 

1) Retrieval of the measurements using GetADC(). The exact sampling instant is that configured 
earlier using ConfigSampling(). 

2) Execution of the current control of both PV strings: 

 Epv1 = Upv1 - RunPIController(&Ipv1_reg, Ipv1_ref - Ipv1);  
 Epv2 = Upv2 - RunPIController(&Ipv2_reg, Ipv2_ref - Ipv2);  
 SetPWMDutyCycle(3, Epv1/Udc); 
 SetPWMDutyCycle(4, Epv2/Udc);  
 
3) Computation of the instantaneous powers extracted by the PV strings. This will be used by 

the MPPT algorithms. An elementary low-pass filtering is also implemented: 

 #define k_iir_lpf 0.05 
 Ppv1 = k_iir_lpf* (Upv1*Ipv1)  +  (1.0-k_iir_lpf)* Ppv1; 
 Ppv2 = k_iir_lpf* (Upv2*Ipv2)  +  (1.0-k_iir_lpf)* Ppv2; 
 
4) Execution of the PLL(s): 

 abc2DQ0(&Ug_dq0, &Ug_abc, theta); 
 theta = RunDQPLL(&DQPLL, &Ug_dq0) ; 
 
5) Computation of the active power injected into the grid and the feedforward value of the 

corresponding current Id_feedfoward: 

 Id_feedforward = 2.0/3.0*(Ppv1 + Ppv2) / Ug_dq0.real; 
 
6) Switch between the possible operating modes. During the CURRENTONLY operating mode, 

this section contains: 

a) Coordinate transformations. 
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b) Execution of control algorithms. In CURRENTONLY mode, this mainly involves the execu-
tion of the grid current controllers. In this example, the maximum modulation depth is 
augmented by injecting a third harmonic on the zero-sequence converter EMF: 

Eg_dq0.real =  Ug_dq0.real 
+ RunPIController(&Id_reg, Ig_dq0_ref.real-Ig_dq0.real) 
- OMEGA*LGRID*Ig_dq0.imaginary; 

Eg_dq0.imaginary = Ug_dq0.imaginary 
+ RunPIController(&Iq_reg, Ig_dq0_ref.imaginary-Ig_dq0.imaginary) 
+ OMEGA*LGRID*Ig_dq0.real; 

Eg_dq0.offset =  -1.0/6.0*Eg_dq0.real*cos(3*theta); 
 

c) Inverse coordinate transformations.  

d) Computation and update of the modulation indices : 

 SetPWMDutyCycle(0, 0.5 + Eg_abc.A/Udc); 
 SetPWMDutyCycle(1, 0.5 + Eg_abc.B/Udc); 
 SetPWMDutyCycle(2, 0.5 + Eg_abc.C/Udc); 
 
7) When the operating mode is defined to BUSVOLTAGE, the bus voltage control is also 

executed just before the grid current control. The following additional code is therefore also 
executed (there is no break statement at the end of the case): 

Ig_dq0_ref.real = Id_feedforward - RunPIController(&Udc_reg, Udc_ref - Udc); 
 
8) Sending of the updated modulation indices to the FPGA-implemented modulators: 

UpdatePWMData(); 

4.d DEFINITION OF THE SECONDARY INTERRUPT SERVICE ROUTINE 
A possible sequence of tasks for the secondary control interrupt is as follows. It essentially 
contains the execution of the MPPT algorithm as well as the main state machine: 

1) When the MPP tracking is active, the current setpoints for the two PV strings are determined 
by the MPPT algorithm. Otherwise, this choice is left free to the user (the setpoints remain 
undefined): 

 if (enable_MPPT==1){ 
Ipv1_ref = RunMPPTracking(&string1_mppt, Ipv1, Ppv1); 

  Ipv2_ref = RunMPPTracking(&string2_mppt, Ipv2, Ppv2); 
 } 
 
2) Execution of the transition between the various operating modes. As shown in the code 

example, the corresponding function call also manages the activation / deactivation of the 
PWM channels: 

 SetOpMode(next_opmode); 
 
It is worth noting here that no tests are made to evaluate possible transition conditions between 
the operating modes. In this example, these transitions are only meant to be triggered by the 
user through the command-line interface. The following section specifically shows how this can 
be handled. 
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4.e DEFINITION OF THE COMMANDS THAT ARE AVAILABLE TO THE USER 
In addition to the blocking and release of the PWM signals (commands enable/disable), the 
command-line access of the BoomBox allows the user to freely define numerous actions. The 
definition of these actions is made in the cli_commands.c file. 

For the present example, the two following commands are implemented: 

a) setmppt, which is meant to activate or deactivate the MPPT algorithm (the command 
setmppt 0 disables the MPPT, while the command setmppt 1 activates it). 

b) mode, followed by the name of the operating mode, which allows to force the change 
between the various operating modes. 

The configuration and principle of operation of these commands is described in the tutorial n°1. 
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