Alpha-Beta-Zero to dq0
Table of Contents
The “Alpha-Beta-Zero to dq0” block converts a space vector from a stationary (αβ0) to a rotating reference frame (dq0). The angle of the rotating reference frame is given by the second input \(\theta=\omega t\).
The transformation is performed using the following rotation:
$$ \begin{bmatrix} V_d\\V_q\\V_0\end{bmatrix}
=\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1\end{bmatrix}\cdot
\begin{bmatrix} V_\alpha\\V_\beta\\V_0\end{bmatrix}$$
Simulink block
Signal specification
- The first input is a vector of dimension 3, containing the αβ0 components of the space vector in the stationary reference frame.
- The second input is the angle \(\theta\) of the rotating reference frame, in radians.
- The output is a vector of dimension 3, containing the dq0 components of the space vector in the rotating reference frame.
Parameters
None.
PLECS block
None. The PLECS block Transformation SRF->RRF can be used instead.
C++ functions
The user template located in the installation folder of CPP SDK contains an API folder with implementations of the coordinate transformation functions. The αβ0 to dq0 function is the following:
void ABG2DQ0(SpaceVector *rotating, const SpaceVector *fixed, const float theta);
Code language: C++ (cpp)
Parameters
rotating
: pointer on the dq0 space vector that will be updated. TheSpaceVector
structure is defined below.fixed
: pointer on the αβ0 space vector that will be transformed. TheSpaceVector
structure is defined below.theta
: the angle of the rotating reference frame, in radians.
typedef struct{
float real; // d- or alpha-axis component
float imaginary; // q- or neta-axis component
float offset; // homopolar component
} SpaceVector;
Code language: C++ (cpp)